# Positron and electron polarimetry at modest beam energies

Dave Gaskell (JLab) Positron Working Group Meeting March 7-8

1



# **Polarimetry in the Positron Injector**

- Working assumptions
  - Beam energy = 120 MeV
  - Current for electrons = few mA
  - Current for positrons = few hundred nA
- Goals
  - Continuous, non-destructive
  - Precision 1% or better
- Usual techniques for absolute polarimetry
  - Mott: Scattered electrons/positrons of interest difficult to detect at 120 MeV?
  - Compton: small analyzing power at 120 MeV, but non-destructive, "symmetric" for e+/e-
  - Møller: Maybe easiest. High current an issue. Destructive. Spectrometer an issue?

Helpful discussion can be found in Eugene Chudakov's talk from the PEB (Polarized Electron Beams) Workshop at MIT in 2013



#### **Compton Scattering - Kinematics**

Laser beam colliding with electron beam nearly head-on

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$
$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}$$



Jeffe



Maximum backscattered photon energy at  $\theta=0$  degrees (180 degree scattering)

For green laser (532 nm):

→ 
$$E_{\gamma}^{max}$$
 ~ 34.5 MeV at  $E_{beam}$ =1 GeV  
→  $E_{\gamma}^{max}$  = 3.1 GeV at  $E_{beam}$ =11 GeV  
→  $E_{\gamma}^{max}$  = 0.5 MeV at  $E_{beam}$ =120 MeV

#### **Compton Scattering – Cross Section and Asymmetry**

$$\rho = \frac{E_{\gamma}}{E_{\gamma}^{\max}} \quad \Longrightarrow \quad \frac{d\sigma}{d\rho} = 2\pi r_o^2 a \left[ \frac{\rho^2 (1-a)^2}{1-\rho(1-a)} + 1 + \left( \frac{1-\rho(1+a)}{1-\rho(1-a)} \right)^2 \right]$$





$$A_{\text{long}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[ 1 - \frac{1}{(1 - \rho(1-a))^2} \right]$$



# **Compton Polarimeter Example (Halls A and C)**



#### Components:

- 1. 4-dipole chicane: Deflect electron beam
- 2. Laser system: Fabry-Perot cavity pumped by CW laser  $\rightarrow$  few kW stored power
- 3. Photon detector: PbWO4 or GSO operated in integrating mode
- 4. Electron detector: segmented strip detector



# **Compton Polarimetry for Positrons and Electrons**

- Compton polarimetry can be applied (easily?) to both positron and electron beams
  - Cross sections, analyzing power identical
  - Polarimeter layout (dipole chicane, detectors, etc.) needs no modifications
     → just need to flip polarity of dipoles in chicane
- Challenges
  - Small analyzing power at low energy  $\rightarrow$  0.43% at endpoint
  - Low rates for positrons (~100 nA) → typically run at 10's of µA in experimental halls
  - Small backscattered photon energy → different detector technology than we typically use for Compton polarimeters at JLab



#### **Compton Measurement Times**

Luminosity for Compton scattering at non-zero crossing angle (CW laser):

$$\mathcal{L} = \frac{(1 + \cos \alpha_c) I_e P_L \lambda}{\sqrt{2\pi}} \frac{1}{e} \frac{hc^2}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin \alpha_c}$$

Beam size at interaction point with laser dictates luminosity (for given beam current and laser/electron beam crossing angle)

Time for measurement of precision  $\Delta P/P$ :

$$t^{-1} \approx \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 P_e^2 < A^2 > 1$$

Measurement time depends on square of analyzing power

This can be average analyzing power, energy-weighted



#### **Measurement time estimates**

- Assumptions:
  - Fabry-Perot cavity similar to Hall A/C Compton polarimeters
    - 1.3 deg. crossing angle
    - stored laser power 4 kW @  $\lambda$ =532 nm
  - Laser/beam spot sizes:  $\sigma_x = \sigma_y = 100 \ \mu m$
- Time to achieve statistical precision of 1%
  - Electrons @ 2 mA: t= 6-8 minutes, backscattered photon rate = 7.2 MHz
  - Positrons @ 200 nA: t=60,000-80,000 minutes  $\rightarrow$  order 1000 hours!



## **RF pulsed FP Cavity**

$$\frac{L_{pulsed}}{L_{CW}} \approx \frac{c}{f\sqrt{2\pi}} \left( \sqrt{\sigma_{c\tau,laser}^2 + \sigma_{c\tau,e}^2 + \frac{1}{\sin^2(\alpha/2)} \left(\sigma_e^2 + \sigma_{laser}^2\right)} \right)^{-1}$$



Luminosity from pulsed laser drops more slowly with crossing angle than CW laser

- → FP cavity pumped by mode-locked laser at beam frequency could yield significantly higher luminosity
- $\rightarrow$  More complicated system R&D required

RF pulsed cavities have been built – this is a technology under development for ILC among other applications

JLab beam structure, nominal laser system, luminosity increase is about a factor of 55

## **Measurement time estimates**

- Assumptions:
  - Fabry-Perot cavity similar to Hall A/C Compton polarimeters
    - 1.3 deg. crossing angle
    - stored laser power 4 kW @  $\lambda$ =532 nm
  - Laser/beam spot sizes:  $\sigma_x = \sigma_y = 100 \ \mu m$
- Time to achieve statistical precision of 1%
  - Electrons @ 2 mA: t= 6-8 minutes, backscattered photon rate = 7.2 MHz
  - Positrons @ 200 nA: t=60,000-80,000 minutes → order 1000 hours!
  - Positrons @ 200 nA, pulsed FP cavity  $\rightarrow$  18 hours
    - Still too long!
    - May be able to reduce by factor of 2 with higher gain/finesse cavity
    - Lower precision goals (factor of 4 is we go for 2% instead of 1%)
    - Combining both of the above  $\rightarrow$  2.3 hours



# Compton at 120 MeV – photon detector

**F** % Resolution (FWHM) =  $\frac{\delta E}{F} \times 100\% \approx \frac{k \times 100\%}{\sqrt{F}}$ 

 $\rightarrow$  Maximum backs cattered photon energy = 0.5 MeV – this is a very different regime than what we are used to!

 $\rightarrow$  Need sufficient energy resolution to measure Compton photon energy spectrum

→ Will need different type of photon detector (PbWO4, GSO not good enough)

→ HPGe?

→ Tried HPGe detector with Compton test in late 90's without great success – backgrounds were an issue



High-Resolution Gamma-Ray Spectroscopy - Ortec



# Compton at 120 MeV –electron detector

Scattered electrons deflected away
from main beam by dipole
→ Higher energy backscattered
photons → lower energy electrons
→ larger distance from beam

Hall A/C chicanes designed to allow detection of scattered electrons to zero crossing

Hall A chicane: 2.3 degree bend, ~20 cm beam displacement at laser

To get scattered electrons ~ 1 cm from beam at 120 MeV – need 20-degree bend  $\rightarrow$  beam displacement = 3 m!





# **Compton Summary**

- Compton polarimetry in principle possible at 120 MeV, but several challenges
  - Small analyzing power significantly increases measurement time (problem for positrons in particular)
  - Kinematics requires much larger footprint for chicane if electron detector used
  - Photon detection requires different detector technology
- Other considerations
  - Compton polarimetry generally requires non-trivial analysis time → can get online results, but final results take more work
  - Can be used continuously, but then requires significant attention → during PREX/CREX, a team of 3-4 people were regularly monitoring the Compton laser system, detectors and results



#### **Møller Polarimetry**

Electron/positron beam scatters from (polarized) atomic electrons in atom (typically iron or similar)

Electrons  

$$\frac{d\sigma}{d\Omega^*} = \frac{\alpha^2}{s} \frac{(3 + \cos^2 \theta^*)^2}{\sin^4 \theta^*} \left[ 1 + P_e P_t A_{\parallel}(\theta^*) \right]$$

Positrons  

$$\frac{d\sigma}{d\Omega^*} = \frac{\alpha^2}{4s} \frac{(3 + \cos^2 \theta^*)^2}{(1 - \cos \theta^*)^2} [1 + P_e P_t A_{\parallel}(\theta^*)]$$

Longitudinally polarized 
$$A_{\parallel} = \frac{-(7 + \cos^2 \theta^*) \sin^2 \theta^*}{(3 + \cos^2 \theta^*)^2} \rightarrow \text{At } \theta^*=90 \text{ deg.} \rightarrow -7/9$$
electrons/target:

Transversely polarized electrons/target

$$A_{\perp} = \frac{-\sin^4 \theta^*}{(3 + \cos^2 \theta^*)^2} \longrightarrow \text{At } \theta^* = 90 \text{ deg.} \Rightarrow -1/9$$

#### Maximum asymmetry independent of beam energy



## **Møller Polarimetry**

Møller polarimetry benefits from large longitudinal asymmetry  $\rightarrow$  -7/9

- $\rightarrow$  Asymmetry independent of energy
- → Relatively slowly varying near  $\theta_{cm}$ =90°
- → Large asymmetry diluted by need to use iron foils to create polarized electrons →  $P_e \sim 8\%$

Large boost results in Møller events near  $\theta_{\text{cm}}\text{=}90^{\circ}$  having small lab angle

→ Magnets/spectrometer required so that detectors can be adequate distance from beam

Dominant backgrounds from Mott scattering – totally suppressed via coincidence detection of scattered and recoiling electrons







## **Example: Hall C Møller Polarimeter**

- Spectrometer (2 quads) needed to steer scattered + recoiling electrons to detectors
- Target is typically some kind of metallic foil → destructive to beam. Measurements must be made intermittently
- Hall C target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
- Beam currents limited to 1-2  $\mu A \rightarrow$  higher currents lead to foil depolarization
- Systematic uncertainties <1%
  - Typically dominated by target polarization, but Hall C high-field target reduces this to ~0.25%





# Møller Polarimetry at 120 MeV

In experimental halls, **spectrometer** required to get sufficient separation between electrons/positrons and beamline

- $\rightarrow$  Challenging for polarimeter intended for both electrons and positrons:
  - $\rightarrow$  For electron beam, spectrometer must deflect 2 particles with same charge to detectors
  - $\rightarrow$  For positron beam, spectrometer must deflect 2 oppositely charged particles to detectors
  - $\rightarrow$  Can't use identical setup for both electrons and positrons (see JPOS17 talk)

At 120 MeV, lab scattering angle is large  $\rightarrow$  5.3 degrees!

 $\rightarrow$  This is big enough that a spectrometer likely isn't needed

 $\rightarrow$  For detectors 50 cm from beamline, need 5.3 m drift





# Møller Polarimetry at 120 MeV

- Advantages
  - No spectrometer required at these low energies not so much space along beamline
  - Works equally well for electrons and positrons (modulo target magnet focusing)
  - Measurement times for 100-200 nA can be on the order of 20-30 minutes for 1% statistical precision
- Disadvantages
  - Destructive measurement must be made intermittently
  - Beam currents for electrons must be reduced  $\rightarrow$  2 mA too high
  - High precision (~1%) requires high field target magnet → steering may be challenging!



# **Non-destructive Møller Measurement?**

Proposal to use atomic hydrogen as target; operates at full beam current, non-destructive measurement

→at 300 mK, 8 T,  $P_e \sim 100\%$ →density ~ 3 10<sup>15</sup> cm<sup>-3</sup>

→lifetime >1 hour

 $\rightarrow$ Expected precision < 0.5%!

Contamination, depolarization expected to be small  $\rightarrow$  < 10 <sup>-4</sup>

Such a target allows measurements concurrent with running experiment, mitigates Levchuk effect

System is under development for use at MAINZ for the P2 experiment



Very technically challenging – requires significant investment and development!



# Hall C Target Magnet Steering at 687 MeV



#### Hall C Target Magnet Steering at 687 MeV





Magnet misalignment (2 mm) had huge impact

## **Low-field Møller**

Prior to use of high-field/saturated iron targets, Møller polarimeters used magnetic alloy, tilted at small angle relative to low field Helmholtz coils

→ Foil saturation/target polarization had to be measured in situ with pickup coil

→ Hall A eventually reduced systematic error on target polarization to 1.5%

If this larger systematic uncertainty is acceptable, would make operation much easier



(old) Hall A Møller Polarimeter target system



# Summary

- Easiest path is likely intermittent Møller measurements with low-field target
  - If high precision is really required, high-field target can be deployed
  - Careful studies of beam steering at low energies should be carried out before committing to this plan (i.e. G0 experience at low energies)
  - Møller with atomic hydrogen target theoretically possible, but very technically challenging
- Compton polarimetry is borderline feasible
  - Would require significant resources → laser development, detector studies, chicane
  - Even in best case, measurement for positrons will take a very long time → of order 1 shift for 1% statistical uncertainty



#### White-board discussion with Joe (Mott Polarimetry)

Mott polarimetry at higher energy becomes increasingly difficult at higher energy

 $\rightarrow$  Scattered electrons (positrons) of interest get too close to beam direction – no way to separate from incoming beam



Dipole used to steer beam to Mott target can be used to deflect scattered particles to detector





24