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Polarimetry in the Positron Injector

« Working assumptions

— Beam energy = 120 MeV

— Current for electrons = few mA

— Current for positrons = few hundred nA
« Goals

— Continuous, non-destructive

— Precision 1% or better

« Usual techniques for absolute polarimetry
— Mott: Scattered electrons/positrons of interest difficult to detect at 120 MeV?

— fComp}on: small analyzing power at 120 MeV, but non-destructive, “symmetric”
or et/e-

— !\/Izlleg: Maybe easiest. High current an issue. Destructive. Spectrometer an
issue’

Helpful discussion can be found in Eugene Chudakov’s talk from the PEB (Polarized
Electron Beams) Workshop at MIT in 2013
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Compton Scattering - Kinematics

Laser beam colliding with electron
beam nearly head-on
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Compton Scattering — Cross Section and Asymmetry

E 2 2 2
_ do > | PP(1—a) —p(l+a)
p= l:> — = 27ria + 14
E%nax dp 11 —=p(1—a) 1—p(1—a)
0.04
_—— Ebeam=1 GeV y
"""" Ebeam=500 MeV ////
0031 Epeam=120 Mev
= S
o /
(U 0-02 T //
=) 2 S e
= VT
204 0.01- P
@) // /
S J o
=== Ebeam=1 GeV M
0.21 Epeam=500 MeV 0.00 frermmre——— el
—— Epeam=120Mev | T -7
00 T T T T —001 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o= EJ™IE, 0= EIE™
2mria 1
A = 9 1—p(1l+a 1—
ons = o gdp) TP T LT T

.geff;?son Lab



Compton Polarimeter Example (Halls A and C)

Electron
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Components:
1. 4-dipole chicane: Deflect electron beam
2. Laser system: Fabry-Perot cavity pumped by CW laser - few kW stored power

3. Photon detector: PbWO4 or GSO — operated in integrating mode
4. Electron detector: segmented strip detector

.geff;?son Lab



Compton Polarimetry for Positrons and Electrons

« Compton polarimetry can be applied (easily?) to both positron and electron
beams

— Cross sections, analyzing power identical

— Polarimeter layout (dipole chicane, detectors, etc.) needs no modifications
-> just need to flip polarity of dipoles in chicane

« Challenges
— Small analyzing power at low energy = 0.43% at endpoint

— Low rates for positrons (~100 nA) - typically run at 10’s of uAin
experimental halls

— Small backscattered photon energy - different detector technology than
we typically use for Compton polarimeters at JLab
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Compton Measurement Times

Luminosity for Compton scattering at non-zero crossing angle (CW laser):

r_ (1 + cos ae )L PpA 1 1
B V2T e hc? \/02 1 g2 sinac
e T 9y

Beam size at interaction point with laser dictates luminosity (for given beam current and laser/electron beam
crossing angle)

Time for measurement of precision AP/P:

2 :

B AP Measurement time depends on square of

t™l ~ Lo (? Pe2 < A% > analyzing power
This can be average analyzing power, energy-weighted
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Measurement time estimates

« Assumptions:
— Fabry-Perot cavity similar to Hall A/C Compton polarimeters
« 1.3 deg. crossing angle
« stored laser power 4 kW @ A=532 nm
— Laser/beam spot sizes: 6,=6,=100 pm
« Time to achieve statistical precision of 1%
— Electrons @ 2 mA: t= 6-8 minutes, backscattered photon rate = 7.2 MHz
— Positrons @ 200 nA: t=60,000-80,000 minutes - order 1000 hours!
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RF pulsed FP Cavity

-1

L

pulsed

2

C
~ O +0O
LCW f /272' \/ ct.laser

JLab beam 2 499 MHz, Ar~0.5 ps

:;x 10?1
§6000 - RF pulsed laser
> I
24000 j‘—_*—‘N"\\\\\\“\\\\\\\\\\\\\\\\‘\‘
E L
=5 L
- CW laser

2000 /

0 | | | | | I

0.5 1 1.5 2 2.5 3
Crossing angle (deg.)

Hall A/C FP cavities
.geff;?son Lab

> 2 l

Luminosity from pulsed laser drops more slowly with

crossing angle than CW laser

- FP cavity pumped by mode-locked laser at beam
frequency could yield significantly higher
luminosity

- More complicated system — R&D required

RF pulsed cavities have been built — this is a
technology under development for ILC among other
applications

JLab beam structure, nominal laser system,
luminosity increase is about a factor of 55



Measurement time estimates

« Assumptions:
— Fabry-Perot cavity similar to Hall A/C Compton polarimeters
« 1.3 deg. crossing angle
« stored laser power 4 kKW @ A=532 nm
— Laser/beam spot sizes: 6,=6,=100 pm
« Time to achieve statistical precision of 1%
— Electrons @ 2 mA: t= 6-8 minutes, backscattered photon rate = 7.2 MHz
—Positrons-@-200-nA-1=60,000-80,000-minutes-—-order 1000-hours!
— Positrons @ 200 nA, pulsed FP cavity - 18 hours
« Still too long!
« May be able to reduce by factor of 2 with higher gain/finesse cavity
 Lower precision goals (factor of 4 is we go for 2% instead of 1%)
« Combining both of the above - 2.3 hours
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Compton at 120 MeV - photon detector

Photon detector

- Maximum backscattered photon energy = 0.5 MeV - this is a very different regime than what we are
used to!

- Need sufficient energy resolution to measure Compton photon energy spectrum
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Fig. 7.1. A Portion of a ®°Co Spectrum, lllustrating the Energy Resolutions and
Peak-to-Compton Ratios for a Coaxial HPGe Detector Compared to a Nal(TI)
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Compton at 120 MeV —electron detector
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Compton Summary

« Compton polarimetry in principle possible at 120 MeV, but several challenges

— Small analyzing power significantly increases measurement time (problem
for positrons in particular)

— Kinematics requires much larger footprint for chicane if electron detector
used

— Photon detection requires different detector technology
e Other considerations

— Compton polarimetry generally requires non-trivial analysis time - can
get online results, but final results take more work

— Can be used continuously, but then requires significant attention - during
PREX/CREX, a team of 3-4 people were regularly monitoring the
Compton laser system, detectors and results

.geffe;?son Lab

13



Maller Polarimetry

Electron/positron beam scatters from (polarized) atomic electrons in atom (typically iron or similar)

Electrons Positrons
do o (3 + cos? 6*)? do  a? (3 + cos? 0*)?

= 1+ P.P A0 =
dQ)* s sin* 6* 1+ A4 (67)] dQ¥*  4s (1 — cos0*)?

[1+ P.PA(67)]

Longitudinally polarized A — —(7+ cos’ 0*) sin” 0* > At 6*=90 deg. > -7/9
electrons/target: I (3 + cos? 0+)2
— sin? 6*
Transversely polarized A = > At 6*=90 deg. > -1/9
electrons/target (3 4 cos? 6*)?

Maximum asymmetry independent of beam energy
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Moaller Polarimetry

Maller polarimetry benefits from large longitudinal

asymmetry - -7/9

- Asymmetry independent of energy

- Relatively slowly varying near 6.,=90°

- Large asymmetry diluted by need to use iron foils
to create polarized electrons 2> P, ~ 8%

Large boost results in Maller events near 0,,=90°

having small lab angle
- Magnets/spectrometer required so that detectors

can be adequate distance from beam

Dominant backgrounds from Mott scattering — totally
suppressed via coincidence detection of scattered
and recoiling electrons
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Example: Hall C Mgller Polarimeter

« Spectrometer (2 quads) needed to steer scattered + recoiling electrons to detectors

« Target is typically some kind of metallic foil > destructive to beam. Measurements must be made
intermittently

« Hall C target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
« Beam currents limited to 1-2 uA - higher currents lead to foil depolarization
« Systematic uncertainties <1%

« Typically dominated by target polarization, but Hall C high-field target reduces this to ~0.25%

target collimators Q2 A&éﬁ"_

| beam

>

detectors

e -
solenoid

9

-1m—<€— 2.125m —><€ 7.965 m
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Maller Polarimetry at 120 MeV

In experimental halls, spectrometer required to get sufficient separation between electrons/positrons and
beamline
- Challenging for polarimeter intended for both electrons and positrons:

- For electron beam, spectrometer must deflect 2 particles with same charge to detectors

- For positron beam, spectrometer must deflect 2 oppositely charged particles to detectors

- Can’t use identical setup for both electrons and positrons (see JPOS17 talk)

At 120 MeV, lab scattering angle is large - 5.3 degrees!
—> This is big enough that a spectrometer likely isn't needed
- For detectors 50 cm from beamline, need 5.3 m drift

Target Detectors

53m
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Maller Polarimetry at 120 MeV

« Advantages

— No spectrometer required at these low energies — not so much space
along beamline

— Works equally well for electrons and positrons (modulo target magnet
focusing)

— Measurement times for 100-200 nA can be on the order of 20-30 minutes
for 1% statistical precision

« Disadvantages
— Destructive — measurement must be made intermittently
— Beam currents for electrons must be reduced = 2 mA too high

— High precision (~1%) requires high field target magnet - steering may
be challenging!

.geffe:?son Lab
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Non-destructive Mgller Measurement?

Proposal to use atomic hydrogen as target; operates at full
beam current, non-destructive measurement H

—>at 300 mK, 8 T, P, ~ 100%

—>density ~ 3 10" cm3 30K
—lifetime >1 hour
- Expected precision < 0.5%!

40 ¢cm

Solenoid 8T

Contamination, depolarization expected to be small > <10 4

Storage Cell

4 cm

Such a target allows measurements concurrent with running
experiment, mitigates Levchuk effect

System is under development for use at MAINZ for the Very technically

P2 experiment challenging — requires
significant investment and

development!
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Hall C Target Magnet Steering at 687 MeV
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Hall C Target Magnet Steering at 687 MeV
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Low-field Mgaller

Prior to use of high-field/saturated iron " .
targets, Mgller polarimeters used | LT ! : B
magnetic alloy, tilted at small angle R TR Pick-up coib |

relative to low field Helmholtz coils e B fihy - TRy A—— 1
- : . /Fa// in envelop
—> Foil saturation/target polarization | il PSSP A zﬁ >
had to be measured in situ with pickup RN = | & z‘ar_ma,vemenf
coil (8 7
—> Hall A eventually reduced systematic
error on target polarization to 1.5%

If this larger systematic uncertainty is
acceptable, would make operation
much easier

(old) Hall A Mgller Polarimeter target system
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Summary

« Easiest path is likely intermittent Mgller measurements with low-field target
— If high precision is really required, high-field target can be deployed

— Careful studies of beam steering at low energies should be carried out
before committing to this plan (i.e. GO experience at low energies)

— Mgller with atomic hydrogen target theoretically possible, but very
technically challenging

« Compton polarimetry is borderline feasible

— Would require significant resources - laser development, detector
studies, chicane

— Even in best case, measurement for positrons will take a very long time -
of order 1 shift for 1% statistical uncertainty
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White-board discussion with Joe (Mott Polarimetry)

Mott polarimetry at higher energy becomes increasingly difficult at

higher energy

—> Scattered electrons (positrons) of interest get too close to
beam direction — no way to separate from incoming beam

detector

-_—
]
-_
LS
-
—
-

e-/e+ beam Mott target

Dipole used to steer beam to Mott target can be used to deflect
scattered particles to detector
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