Axial Form Factor from Weak Capture of Polarized Positrons

Dipangkar Dutta Mississippi State University

Measuring the electroweak current of a nucleon is one of the key tools for understanding nucleons in terms of the underlying quark & gluons.

vector current (EM structure)

Characterized by EM form factors (G_E , G_M); charge and magnetization distributions in the nucleon

Axial electroweak charge is unique to the weak force

Characterized by Weak form factors (G_E^Z , G_M^Z , G_A , G_P); weak vector charge and magnetization distributions in the nucleon & axial charge distribution (related to spatial distribution of the spin angular momentum).

The vector electroweak form factors have been extensively studied using electron scattering

constrained by charge conservation

$$\langle r_p^2 \rangle = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2 = 0}$$

Slope of form factor at Q² =0 give RMS radii of distribution

PVES has been used to measure weak vector form factors

vector current insensitive to details of QCD

Fig. from Alarcon & Weiss, PLB 784, 373 (2018)

The axial current is more sensitive to QCD details but not as well known

Axial current characterized by the axial and induced pseudo scalar form factors $[G_{A},(Q^2), G_{P}(Q^2)];$

Not directly accessible in e-scattering

Measured in μ capture, quasi-elastic v scattering and low energy π production.

רס[<]

Measured only at low Q², large uncertainties, very little info above $Q^2 > 1 \text{ GeV}^2$

Fig. from Bernard, Elouadrhiri & Missner, J. Phys. G 28, R1 (2002)

The axial charge (g_A) and rms axial radius (< r_A >²) are fundamental weak interaction parameters.

$$G_A^{u-d}(Q^2=0) \to g_A$$

Necessary for neutrino oscillation experiments for solar and reactor neutrino fluxes

 $\lambda = g_A/g_V$ is usually obtained from measurement of neutron beta decay correlation parameters A and a

But recently 5σ differences between various measurements have arisen

$$\langle r_A^2 \rangle = -\frac{6}{g_{\rm A}} \frac{dG_A}{dQ^2}|_{Q^2=0}$$

There are related puzzles arising from the >4 σ differences in neutron lifetime (τ_n) and the CKM parameter V_{ud}

τ_n from bottle vs beam experiments differ by >4 σ Vud from $0^+ \rightarrow 0^+$ super allowed decays vs from CKM unitarity differ by 4.4 σ

in the axial radius ($< r_A >^2$)

Assuming a dipole form $[1/(1+ Q^2/M_A^2)]$

Different neutrino scattering experiments indicate possible large discrepancies

²)²] for G_A(Q²);
$$\langle r_A^2
angle = 12/M_A$$

Recent results from the Minerva experiment have large uncertainties and differ from previous measurements.

Data

Assuming a dipole form $[1/(1 + Q^2/M_A^2)^2]$ for $G_A(Q^2)$;

$$\langle r_A^2
angle = 12/{
m M_A}$$

Current knowledge of the weak axial current is ripe for a new experimental technique with completely different systematics

T. Cai et al., Nature 614, 48–53 (2023)

This is an inverse beta decay process ($\bar{e}^+ + {}^2H \rightarrow p + p + v_e$)

Cross section for right-handed positrons is strictly zero **Cross section increases with beam energy/Q²**

The capture of polarized positrons in deuterium is just such a new technique

The cross section for 2-6 GeV positrons was calculated as part of early design possibilities for CEBAF

W.-Y. P. Hwang, Phys. Rev. C33, 1370 (1986) Mintz et al., Int. J Mod. Phy. E6, 111 (1996)

This is an inverse beta decay process ($\bar{e}^+ + {}^2H \rightarrow p + p + v_e$)

Cross section for right-handed positrons is strictly zero

The cross section is dominated by the Axial form factor

W.-Y. P. Hwang, Phys. Rev. C33, 1370 (1986)

0.1 - 0.5 GeV/c proton pairs @ 70 - 90 deg : $Q^2 = 0.01 - 0.5 GeV^2$

Although cross section increases with beam energy, 2 - 6 GeV is ideal for background suppression.

At higher beam energies the scattered positron from the main

Experiment would need a recoil detector for the proton pair operated in anti-coincidence with scattered positrons

Needs a recoil detector and a small angle positron spectrometer/detector Solenoid around the target will control the load from Bhabha scattering. (capture only allowed for left handed positrons)

- The quasi-elastic scattered positrons have to be detected in time and vertex anti-coincidence with the proton pair.
- Positron polarization will also be used to distinguish between capture process and background processes.

Several recoil detector already built or currently under development fit the bill

Detector property	RTPC	mTPC	A
Length	40 cm	40 cm	3
Momentum range	70 - 250 MeV/c	70 - 500 MeV/c	70 -
azimuthal coverage	360 deg	360 deg	34
Momentum resolution	10% (100 MeV/c p)	0.5% (70 MeV/с р) 5% (400 MeV/с р)	10
z resolution	3 mm	1 mm	3

 $\Delta Q^2/Q^2 \propto 2\Delta p/p \sim 1\% - 10\%$

LERT

85 cm

250 MeV/c

40 deg

⁰∕₀ (100 MeV/c p)

3 mm

Simulated 70 MeV/c protons in mTPC

Quasi-elastic knockout of protons in accidental coincidence is the largest background to the capture process.

- Beam & Target: 4 GeV polarized positrons (60% polarization), 200 nA current on 40 cm, 6 atm. ²H target = a luminosity of 8x10³⁴ cm⁻²/s
- proton pair detection: 2π azimuthal coverage, 10 deg polar angle bin, 100 MeV/c proton momentum bin \Rightarrow 30 MeV v energy bin
 - positron capture (signal) count rates of ~3 x10⁻²/s
 - QE scattering cross section is ~1.0 μ B/sr (10⁹ larger)
 - ~2800 /s
 - using positrons in vertex and time anti-coincidence with 99.9% efficiency background rates would be ~3 /s

proton knockout accidental 2 proton coincidence

capture cross section

~ 1.0 x10⁻⁹ µB/sr/MeV

e⁺

gives **S/B** ~ 10⁻²

A few beam energies are needed to cover a range of Q²

Beam & Target: 4 GeV polarized positrons (60% polarization), 200 nA current

on 40 cm, 6 atm. ²H target = a luminosity of 8x10³⁴ cm⁻²/s

Quasi-elastic knockout of neutron followed by a charge exchange re-scattering, is another background to the capture process.

In parallel kinematics (along the q-vector), rescattering cross sections are at least one order of magnitude lower than the direct process.

using positrons in vertex and time anti-coincidence with 99.9% efficiency background rates would be < 0.3 /s

gives S/B > 10⁻¹

C. Barbieri, L. Lapikás, D. Rohe, Two step rescattering in (e,e'p) reactions, EPJA 24, 85 (2005).

The capture process occurs only for left-handed positrons, providing another handle for isolating the signal

 $N + = N_{s}^{+} + N_{bgd}^{+}; N - = 0 + N_{bgd}^{-}; P_{b} = 0.6$

The asymmetry can be measured with 3% stat. uncertainty using 20 days of beam time.

To perform the measurement at 3 different beam energies (2, 4, 6 GeV) we need ~60 days beam time

Highest beam polarization available is desired to control systematic uncertainties

 $(\vec{e}^+ + ^2H \rightarrow p + p + \nu_e)$

Ac

The EM background is large and polarization is a means for suppressing this large background.

Additional beam time for P_b lower than 0.6 is $(1-P_b)/0.4$

$$= \frac{A_{meas}/P_b - f^*A_{bgd}}{1 - f}$$

S/B ~ 1/current and ΔA ~ 1/current

Figure of merit for the asymmetry does not improve with lowering polarization for higher current.

The axial form factor can be extracted from the measured asymmetry

Extrapolating to Q² = 0 we can extract g_A

and from the slope we can extract <r_A>²

each with a few % stat. uncertainty

Summary

axial coupling g_A and the rms axial charge radius $\langle r_A \rangle^2$.

currently being developed for experiments at JLab.

several current puzzles.

- The weak capture of positrons in ²H with a medium energy polarized positron beam, can provide a new and unique measurement of the Q^2 dependence of $G_A(Q^2)$, the weak
- These measurements would use detection techniques that are already in use or
- The positron capture based measurement would have a completely different set of systematic uncertainties compared to all known methods and may help resolve

