Super-Rosenbluth Measurements with Positrons to Study the Two-Photon Exchange

John Arrington – Lawrence Berkeley Laboratory **Michael Nycz – University of Virginia** Nathaly Santiesteban – University of New Hampshire Mikhail Yurov – Mississippi State University

Positron Working Group Workshop March 7-8 2023

- Elastic form factors: Rosenbluth and Polarization
- Overview of Super-Rosenbluth measurement
- Super-Rosenbluth experiment with positrons
- Summary and Outlook

Form factors from unpolarized elastic scattering

Unpolarized elastic cross section depends on charge and magnetic form factors: $G_E(Q^2) G_M(Q^2)$ $\sigma_R = d\sigma/d\Omega [\epsilon(1+\tau)/\sigma_{Mott}] = \tau G_M^2(Q^2) + \epsilon G_E^2(Q^2)$ $\tau = Q^2/4M^2$ $\epsilon = [1 + 2(1+\tau)\tan^2(\theta/2)]^{-1}$

Rosenbluth extractions

$$\sigma_R = \frac{d\sigma}{d\Omega} \frac{(1+\tau)\epsilon}{\sigma_{ns}} = \tau G_{Mp}^2 + \epsilon G_{Ep}^2$$

Rosenbluth extractions

$$\sigma_R = \frac{d\sigma}{d\Omega} \frac{(1+\tau)\epsilon}{\sigma_{ns}} = \tau G_{Mp}^2 + \epsilon G_{Ep}^2$$

Polarization transfer measurements

 $\frac{G_{Ep}}{G_{Mp}} = -\frac{P_l}{P_t} \frac{E + E'}{2M_p} tan\left(\frac{\theta_e}{2}\right)$

Significant difference at high Q², where Rosenbluth have large errors, typically limited by systematics

Rosenbluth extractions

$$\sigma_R = \frac{d\sigma}{d\Omega} \frac{(1+\tau)\epsilon}{\sigma_{ns}} = \tau G_{Mp}^2 + \epsilon G_{Ep}^2$$

Polarization transfer measurements

G_{Ep}	$-\frac{P_l}{E+E'}$ tan	$\left(\frac{\theta_e}{\theta_e}\right)$
$\overline{G_{Mp}}$	$-\frac{1}{Pl}\frac{1}{2M_p}$	$\left(\frac{1}{2}\right)$

Black points – "Super-Rosenbluth" measurement:

Modified technique that gives significantly smaller uncertainty on the RATIO G_E/G_M

I. A. Qattan, et al, PRL 94, 142301 (2005)

Rosenbluth extractions

$$\sigma_R = \frac{d\sigma}{d\Omega} \frac{(1+\tau)\epsilon}{\sigma_{ns}} = \tau G_{Mp}^2 + \epsilon G_{Ep}^2$$

Polarization transfer measurements

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P_l}{Pl} \frac{E+E'}{2M_p} tan\left(\frac{\theta_e}{2}\right)$$

Difference assumed to be caused by two-photon exchange (TPE) corrections

QED: straightforward
to calculate
eQED+QCD: depends on
proton internal structure
 γ^*
 μ μ γ^*
 μ ρ

Black points – "Super-Rosenbluth" measurement: Modified technique that gives significantly smaller uncertainty on the RATIO G_{E}/G_{M}

I. A. Qattan, et al, PRL 94, 142301 (2005)

Two-Photon Exchange

Two-Photon Exchange

•
$$R = \frac{\sigma(e^+p)}{\sigma(e^-p)} \longrightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

• Target-Normal & Beam-Normal SSA • $B_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \frac{2Im(M_{\gamma\gamma}M_{\gamma}^*)}{|M_{\gamma}|^2}$

B.Gou et al. Phys. Rev. Lett. 124

•
$$R = \frac{\sigma(e^+p)}{\sigma(e^-p)} \longrightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

- Target-Normal & Beam-Normal SSA • $B_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \frac{2Im(M_{\gamma\gamma}M_{\gamma}^*)}{|M_{\gamma}|^2}$
- Direct comparison between Rosenbluth and polarization measurements
 - Super-Rosenbluth provides a way to make high precision measurements at large Q^2

Two-Photon Exchange Corrections

Two-photon exchange effects can explain discrepancy in G_EGuichon and Vanderhaeghen, PRL 91, 142303 (2003)Requires ~6% ε -dependence, weakly dependent on Q²,roughly linear in εJA, PRC 69, 022201 (2004)

If this were the whole story, LT would give $G_{\rm M},$ PT gives $G_{\rm E}/G_{\rm M}$

There are other issues to be addressed

Constraints (~1%) from positron-electron comparisons TPE effects on *polarization transfer*?

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- > Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- \succ Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

Super-Rosenbluth: Proton detection

• Fixed proton momentum at fixed Q²

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- \succ Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

- Fixed proton momentum at fixed Q²
- Cross section, radiative correction have much smaller *ε* dependence

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- \succ Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

- Fixed proton momentum at fixed Q²
- Cross section, radiative correction have much smaller *ε* dependence
- Higher cross section for small ε

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- \succ Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

- Fixed proton momentum at fixed Q²
- Cross section, radiative correction have much smaller *ε* dependence
- Higher cross section for small ε
- Less sensitive to kinematic uncertainties

Rosenbluth (L/T) measurement: vary ε (q) at fixed Q²

Conventional measurement: electron detection

- $\varepsilon \approx 1$: large beam energy, small scattering angle, large electron momentum, high rates
- $\varepsilon \approx 0$: small beam energy, large angle, small electron momentum, low rates
- Extraction of ε dependence is sensitive to momentumand rate-dependent corrections (including rad corr)
- Limited by low cross sections at large scattering angle

- Fixed proton momentum at fixed Q²
- Cross section, radiative correction have much smaller *ε* dependence
- Higher cross section for small ε
- Less sensitive to kinematic uncertainties

Conventional positron-electron comparisons limited by positron luminosity (especially at low ε , where TPE are larger) and requirement of significant cancellation between e- and e+ systematics

- Cross section limit most significant at kinematics where TPE are large
- Require frequent changes between e+ and e- beams; similar beam properties

Conventional positron-electron comparisons limited by positron luminosity (especially at low ε , where TPE are larger) and requirement of significant cancellation between e- and e+ systematics

- Cross section limit most significant at kinematics where TPE are large
- Require frequent changes between e+ and e- beams; similar beam properties

S-R technique enhances cross section at low ε , relies on cancellation between points at different scattering angles (and fixed Q²)

- Allows precise e+ to e- comparison on the Rosenbluth slope, even for separate e+, e- experiments
- Does not allow direct e+/e- ratio at individual ε , Q² points (without normalization at ε =1)

Conventional positron-electron comparisons limited by positron luminosity (especially at low ε , where TPE are larger) and requirement of significant cancellation between e- and e+ systematics

- Cross section limit most significant at kinematics where TPE are large
- Require frequent changes between e+ and e- beams; similar beam properties

S-R technique enhances cross section at low ε , relies on cancellation between points at different scattering angles (and fixed Q²)

- Allows precise e+ to e- comparison on the Rosenbluth slope, even for separate e+, e- experiments
- Does not allow direct e+/e- ratio at individual e, Q² points (without normalization at $\varepsilon = 1$)

Can perform precise S-R extraction with positrons and S-R with electrons independently.

Does not require rapid beam changes or identical beam characteristics.

Rosenbluth separations: e+ vs e-

Kinematics

Black: 2.2 GeV/pass

- 2-3 high-epsilon points at each Q²
- Larger e range for higher Q² points

Blue or magenta: 0.6 or 0.78 GeV/pass

- Each linac setting gives five different Q² values with large lever arm in epsilon
- Intermediate Q² with smaller lever arm

Can run with positrons only, compare to $\overline{\gamma}$ polarization \rightarrow should see opposite discrepancy than electrons

Projected Uncertainties

Uses all 3 linac settings from previous plot

Assumes 2 μ A for positrons, 10cm LH2 target

Electron data in separate run: 20-50 µA

 \rightarrow 35-40 days using 2 HRSs in Hall A OR using the HMS in Hall C (twice the solid angle)

Comparison doubles size of observed TPE contributions, is independent of potential TPE to polarization measurements

Summary and Outlook

- Contribution of TPE effects causing difference in Rosenbluth and Polarization measurements still not well constrained
 - Measurements investigating TPE at large Q^2 are challenging
 - Differing theoretical predictions
 - High precision data to understand TPE

Super-Rosenbluth measurement using positrons

- Precision extraction of G_E/G_M
- Compare with polarization measurements to determine magnitude of two-photon corrections as a function of Q^2
- Optimize kinematic for positrons Super-Rosenbluth measurement
 - Can make complimentary e⁻ Super-Rosenbluth measurement
 - Doubles the sensitivity
- Updating and optimizing kinematics
- Proposal in progress
 - John Arrington, Mikhail Yurov, Nathaly Santiesteban and Michael Nycz
 - Currently updating and optimizing kinematics + reformatting proposal

Thank You

Advantage of Detecting the Proton

Advantage of Detecting the Proton

Two Photon Exchange?

Limits set for non-linear (non-Born) contributions: V. Tvaskis, et al., PRC 73 (2006) 025206

Limits set for θ-dependent (non-Born) PT contributions: *M. Meziane, PRL 106* (2011) 132501

Evidence (3 σ) for TPE in existing e+/ecomparisons (TPE changes sign with lepton charge): JA, PRC 69 (2004) 032201

Many model-dependent TPE calculations generally good qualitative agreement with observed discrepancy: [Afanasev, et al.; Blunden, et al.; Borisyuk and Kobushkin; Chen, et al.; etc.....]

Snapshot of new e+/e- comparisons

• Results in from JLab(CLAS) and Novosibirsk(VEPP-3) experiments

JLab: D. Adikaram, et al., PRL 114 (2015) 062003 D. Rimal, et al., arXiv:1603.00315 VEPP-3: I.A.Rachek, et al., PRL 114 (2015) 062005 Good agreement with hadronic TPE Point proton (~Q²=0 limit) has opposite sign from data at Q² = 1-1.5 GeV² OLYMPUS: up to Q²~2 GeV², ~1% uncertainties [talk by J. Bernauer]

- If Olympus also agrees with calculations, very strong overall case for TPE as culprit
 - Hadronic calculations appear to be reliable at low Q², where they should be most reliable, and where many
 of the extremely high-precision data are taken
 - Other improvements to radiative corrections still being investigated

e.g., Gramolin and Nikolenko, PRC 93 (2016) 055201 [arXiv:1603.06920]