A direct measurement of hard Two-Photon Exchange with positrons at CLAS12

Axel Schmidt

Positron Working Group Meeting

March 7, 2022

Measurements of the proton's form factors are discrepant.

Measurements of the proton's form factors are discrepant.

The current status of two-photon exchange is uncomfortable.

- Difficulties in calculations
- Recent experiments inconclusive
- Positron facilities world-wide are turning off
- Field is embarking on 3d imaging campaign of the nucleon.

Goal of producing a PAC proposal to measure two-photon exchange at CLAS12 with positrons

Spokespeople: J. C. Bernauer, V. D. Burkert, E. Cline, **A. Schmidt**, N. Santiesteban, T. Kutz

Based on PWG White paper article:
 "Determination of two-photon exchange via e⁺p/e⁻p scattering with CLAS12"
 J. C. Bernauer et al., EPJA 57:144 (2021)

Experimental details:

- e^+ , e^- beams at 2.2., 3.3, 4.4, 6.6 GeV, unpolarized, ≈ 60 nA
- Unpolarized H₂ target
- \blacksquare \approx 55 PAC days

The one "missing" radiative correction is hard two-photon exchange.

The standard set

Hard two-photon exchange

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Phenomenology

- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. A. Schmidt, JPG 47, 055109 (2020)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Phenomenology

- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. A. Schmidt, JPG 47, 055109 (2020)

Alternate Approaches

e.g., E. A. Kuraev et al., Phys. Rev. C 78, 015205 (2008)

TPE produces an asymmetry between electron and positron scattering.

Elastic scattering is a 2D space

Theory predictions for $\sigma_{e^+p}/\sigma_{e^-p}$ are not in agreement.

Theory predictions for $\sigma_{e^+p}/\sigma_{e^-p}$ are not in agreement.

The polarization transfer results are not necessarily correct.

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 - 4G_M \operatorname{Re}\left(\delta \tilde{G}_M + \frac{\epsilon \nu}{M^2} \tilde{F}_3\right) - \frac{4\epsilon}{\tau} G_E \operatorname{Re}\left(\delta \tilde{G}_E + \frac{\nu}{M^2} \tilde{F}_3\right) + \mathcal{O}(\alpha^4)$$

$$\frac{P_t}{P_l} = \sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \frac{G_E}{G_M} \times [1+\ldots] + \operatorname{Re}\left(\frac{\delta\tilde{G_M}}{G_M}\right) + \frac{1}{G_E}\operatorname{Re}\left(\delta\tilde{G_E} + \frac{\nu}{m^2}\tilde{F}_3\right) - \frac{2}{G_M}\operatorname{Re}\left(\delta\tilde{G_M} + \frac{\epsilon\nu}{(1+\epsilon)m^2}\tilde{F}_3\right) + \mathcal{O}(\alpha^4) + \ldots]$$

Formalism of Carlson, Vanderhaeghen, Annu. Rev. Nucl. Part. Sci., 2007

Three recent experiments measured hard TPE.

Three new experiments have measured $R_{2\gamma}$.

OLYMPUS

CLAS VEPP-3

Three new experiments have measured $R_{2\gamma}$.

Three new experiments have measured $R_{2\gamma}$.

VEPP-3, Novosibirsk, Russia

CLAS, Jefferson Lab, USA

OLYMPUS, DESY, Germany

OLYMPUS, DESY, Germany

OLYMPUS, DESY, Germany

OLYMPUS observed a small TPE effect.

Henderson et al., PRL 118, 092501 (2017)

Recent measurements lacked the kinematic reach to be decisive.

Recent measurements lacked the kinematic reach to be decisive.

CLAS12 TPE experiment, as drawn up in the white paper

- 100 nA (unpolarized) e⁺ beam
 - 2.2, 3.3, 4.4, 6.6 GeV
- 10^{35} cm⁻² s⁻¹ luminosity
 - Standard CLAS liquid H₂ target
- 55 PAC days
 - Collect data with both e^- and e^+ to reduce systematics.
- Coincident detection of e^{\pm} and p
 - Over-constrainted kinematics
 - Need to modify trigger

CLAS12 holds several key advantages over OLYMPUS

	OLYMPUS	CLAS12
Azimuthal acceptance	$\pi/4$	2π
Luminosity	$2 \cdot 10^{33}$	10 ³⁵
Beam energy	2 GeV	10 GeV

CLAS12 is ideal for mapping TPE over a wide phase space.

J. C. Bernauer et al., Eur.Phys.J.A 57, p. 144 (2021)

CLAS12 is ideal for mapping TPE over a wide phase space.

J. C. Bernauer et al., Eur.Phys.J.A 57, p. 144 (2021)

CLAS12 is ideal for mapping TPE over a wide phase space.

J. C. Bernauer et al., Eur.Phys.J.A 57, p. 144 (2021)

An elastic scattering event in CLAS12

An elastic scattering event in CLAS12

Current CLAS12 equipment lack the means to trigger on a central e^{\pm} .

Proposed solution: run with streaming read-out

Already a long-term goal for CLAS12

- Streaming test of forward tagger
 F. Ameli et al., EPJ Web of Conferences (2021)
- Key R&D stepping stone to EIC
- Expertise within our collaboration

Work underway

Analyzing CLAS12 data on tape

- Run Group M, 6 GeV on H₂
- Study backgrounds, rates, resolutions

Simulations

How do our events look outside of normal "triggered" kinematics?

Developing streaming plan

- Clock trigger data can tell us about expected data rates
- What resources will be needed to reduce data to manageable rate?

Limiting Systematics

• Over-all Scale: Relative e^+/e^- luminosity

- Typical absolute accuracy of 2–5% in Hall B
- \blacksquare Relative luminosity should be better, $\approx 1\%$
- Compare to OLYMPUS, high- ϵ data as a cross check
- Point-to-Point: Local efficiency
 - Magnetic fields bend e^+ , e^- to different parts of the detector for equivalent Q^2 , ϵ .
 - Need heavy-duty Monte Carlo
 - OLYMPUS had efficiency, gain, resolution mapped for individual drift chamber wires
 - Fast-switching of $e^+ \leftrightarrow e^-$ can reduce time-dependent effects.

Radiative corrections will be critical.

- OLYMPUS tested several RC prescriptions, built custom radiative event generator.
- Significant charge-odd corrections that are not hard TPE
- See recent (2022) ECT Workshop, as well as 2020 CFNS Workshop White Paper.

Recap:

TPE is still a problem.

Recap:

- TPE is still a problem.
- Key region is $3 < Q^2 < 5$

Recap:

- TPE is still a problem.
- Key region is $3 < Q^2 < 5$
- CLAS12 e⁺ proposal in preparation

After this proposal

- White paper proposed several alternative TPE observables.
 - How do rank priorities?
 - Polarization transfer, TPE on nuclei, Beam-normal SSAs

Single-spin asymmetries with positrons

Eur. Phys. J. A (2021) 57:213 https://doi.org/10.1140/epja/s10050-021-00531-7

Regular Article - Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL A

Target-normal single spin asymmetries measured with positrons

G. N. Grauvogel¹, T. Kutz^{1,2}, A. Schmidt^{1,a}

¹ George Washington University, Washington, DC 20052, USA

² Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Eur.Phys.J.A 57, p. 213 (2021)

- Sensitive to imaginary part of TPE amplitude
- Separate TPE from T-violation
- First measurement on protons at JLab

Gabe Grauvogel

A measurement at JLab would cover new ground.

After this proposal

• White paper proposed several alternative TPE observables.

- How do rank priorities?
- Polarization transfer, TPE on nuclei, **Beam-normal SSAs**
- Consider a CLAS12 positron run group
 - Obvious reactions: SIDIS, DVCS, π electroproduction
 - Need to consider within streaming plan
 - Polarized e⁺ can't hurt

Back Up

Proposed solution: replace CLAS CND with new "Central Electron Calorimeter"

- Design based on previous CLAS12 CEC concept
 - Some proof-of-concept work done by group in Paris-Saclay
- Tungsten powder calorimeter
- Light collected by fiber, sent to SiPMs

