The Long Term Future of Jefferson Lab

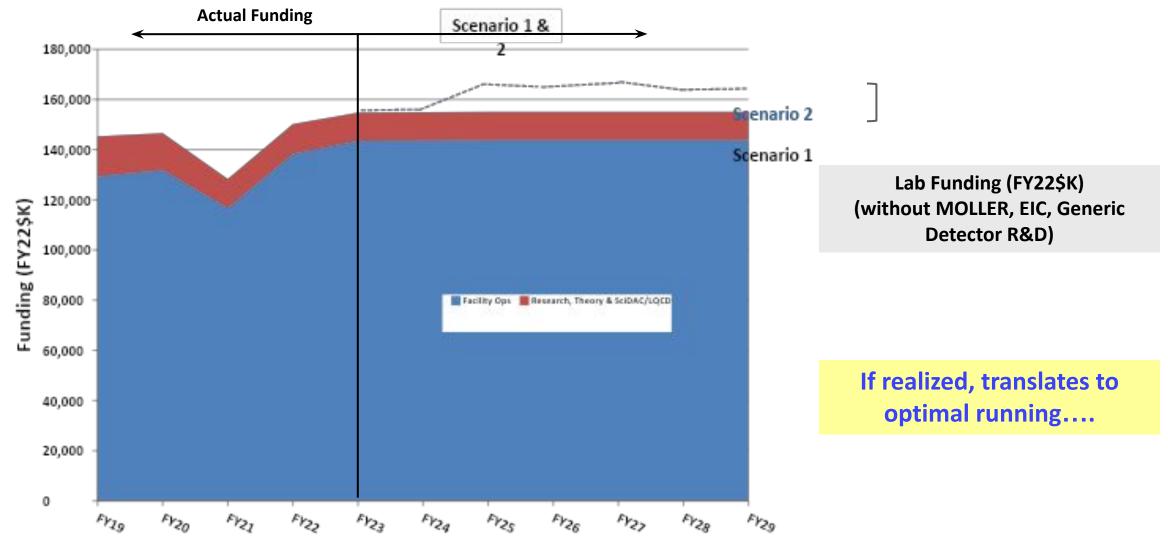
Cynthia Keppel

Positron Working Group Workshop March 7,8 2023 University of Virginia

Starting point: Highlights from February DOE Budget Meeting

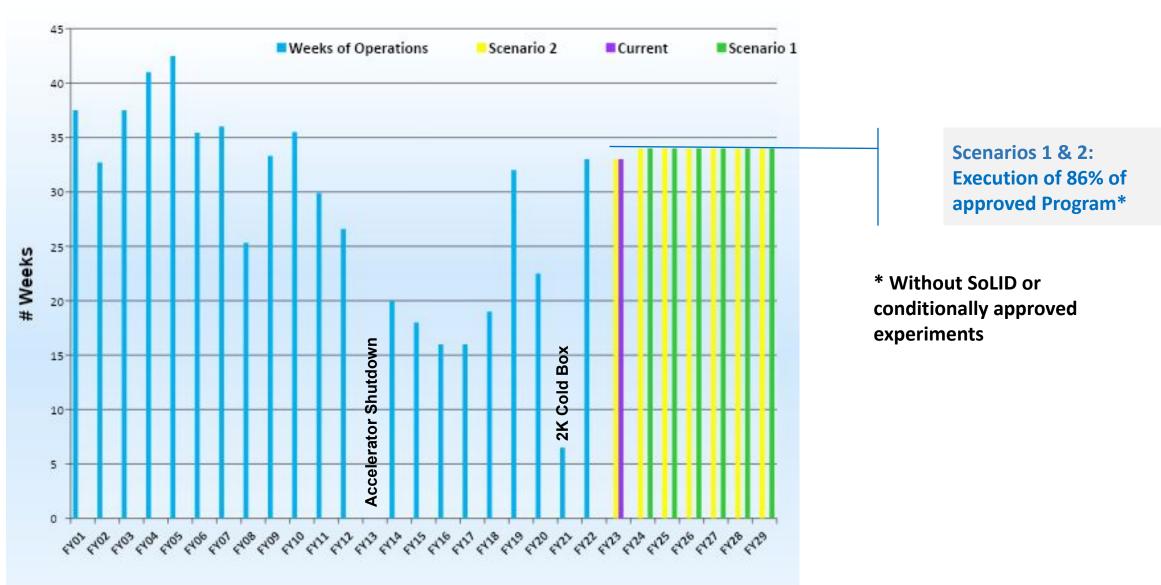
- 12 GeV scientific era is going strong
 - More than 30 weeks operation in FY22 and FY23 (planned), enabled by supportive Operations budget
 - High-profile results emerging from 12 GeV program (and still from 6 GeV program)
 - Progressing on CPP with CM refurbishments, C75 CM construction and spares purchases
- Successful partnership with BNL in management, design, construction of EIC Project
 - Developed and defended cost/schedule basis for JLab scope integrated into EIC project plan
- Successful MOLLER Project CD-3a OPA review, on-track; SoLID ready to move ahead
- Exploring exciting scientific opportunities enabled by cost-effective and technically innovative CEBAF upgrade concept
- Multi-Lab Partnerships: SNS PPU (nearing completion) and LCLS-II HE are delivering good project performance
- Very good management of COVID impacts
- Significant developments in DEI culture and safety performance and culture
- Initial steps toward diversifying Jefferson Lab's scientific mission
- Recruiting is at a high pace; a number of great additions to Jefferson Lab, even as we lose expertise to attrition

12 GeV Experiments by PAC Days (status Feb 15, 2023)

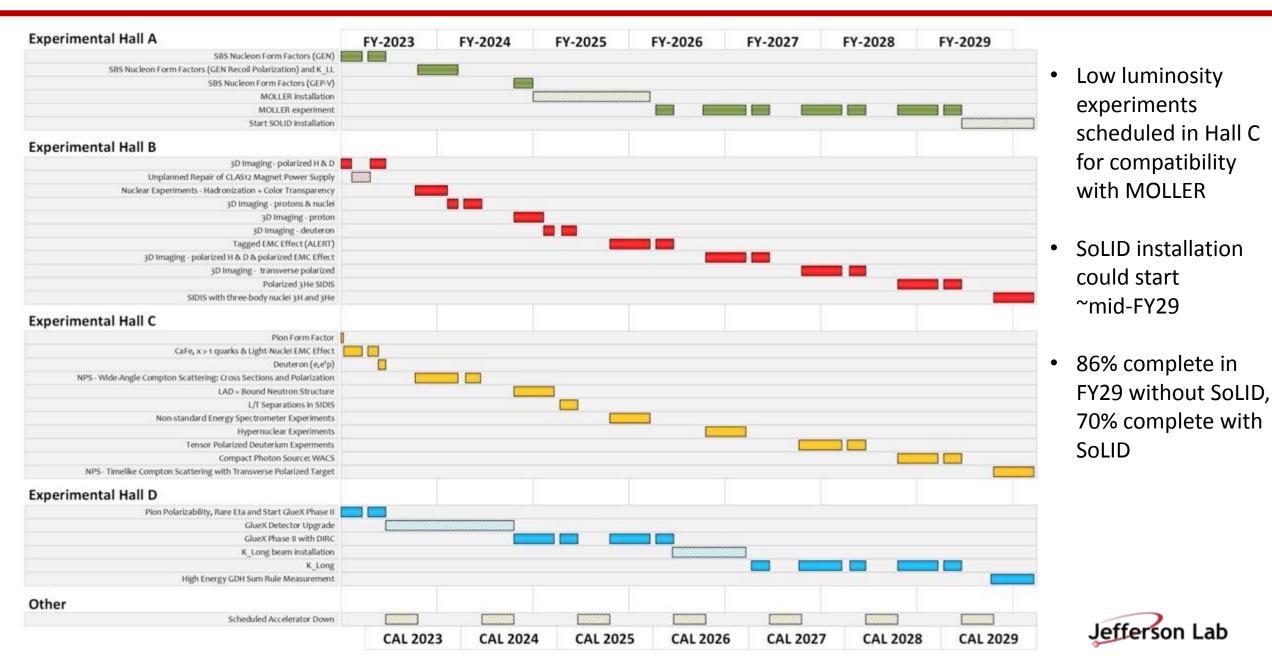

Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
Hadron spectra as probes of QCD	0	3	1	4	0	8
Transverse structure of the hadrons	7	4	1	1	0	13
Longitudinal structure of the hadrons	1	3	12	1	0	17
3D structure of the hadrons	7	9	8	0	0	24
Hadrons and cold nuclear matter	9	6	8	1	1	25
Low-energy tests of the Standard Model and Fundamental Symmetries	3	2	0	1	2	8
Total	27	27	30	8	3	95
Total Completed	11	11	8	3	0	33
Experiments Removed by Jeopardy	4	4	3	0	0	11
Total Experiments Remaining	12	12	19	5	3	51

355 PAC days completed since last February

56 Hall A (SBS target installation), 87 Hall B (power supply failure), 106 Hall C, 106 Hall D 32 weeks = 112 PAC days


Jefferson Lab

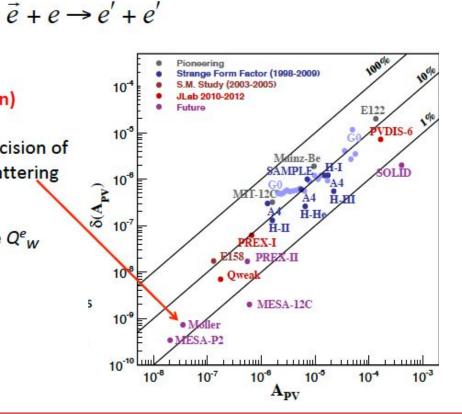
Lab Funding Scenarios

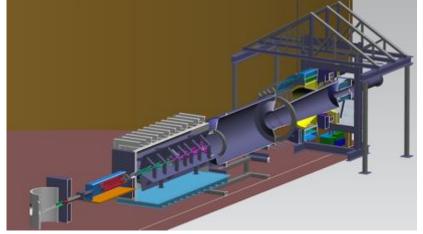


CEBAF Weeks of Operations

JLab – Long Term Schedule (in preparation...)

Elastic scattering of longitudinally polarized electrons on unpolarized electrons


$$A_{PV} = \frac{\boldsymbol{\sigma}_{R} - \boldsymbol{\sigma}_{L}}{\boldsymbol{\sigma}_{R} + \boldsymbol{\sigma}_{L}}$$

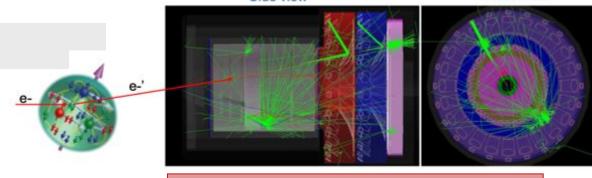

proportional to the electron's weak charge Q^e_w - precisely predicted in Standard Model

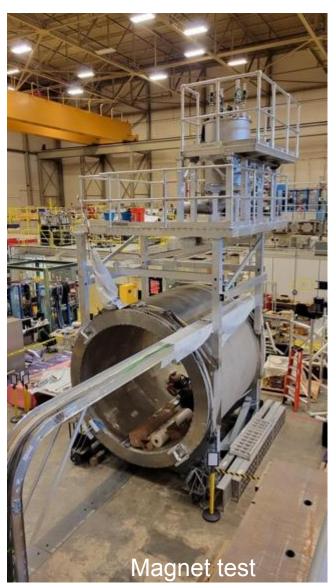
At tree level $Q_W^e = -(1 - 4\sin^2\theta_W)$

2.4% precision on $Q^e_W = 0.1\%$ on $\sin^2 \theta_W$

Slide from Mark Pitt

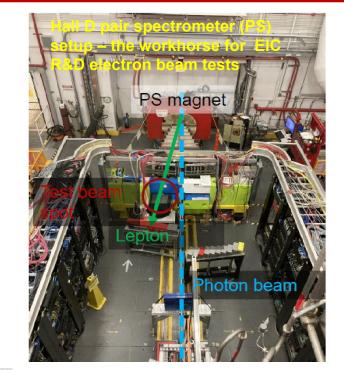
MOLLER will probe energy regions for Beyond Standard Model Physics to ~27 TeV in this Q-weak sector

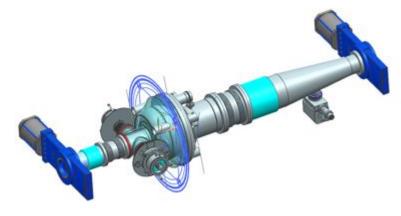

OPA review, January 2023: "Proceed to CD-3A after updating cost estimates, risks, and the contingency analysis (for the CD-3A scope)."


LHC energies: 13 TeV

SoLID fully enables CEBAF 12 GeV at the Intensity Frontier

- Nucleon spin, proton mass, BSM experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
- High luminosity 10³⁷-10³⁹ cm⁻²s⁻¹ and large acceptance working in tandem
- Science reach
 - Precision 3D momentum imaging in the valence quark region
 - Exploring the origin of the proton mass and gluonic force in the non-perturbative regime
 - Beyond Standard Model searches complementary to Moller
 Side view

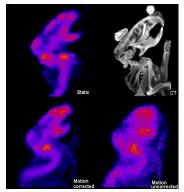

Awaiting Science Review Report

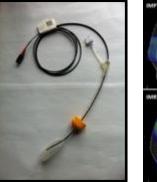


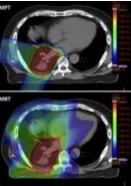
EIC R&D (Project and generic) highlights with strong JLab synergy

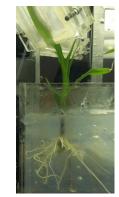
- Generic EIC Detector R&D (\$2M) funded and R&D starting
- MPGD-based R&D:
 - Development of cylindrical mRWELL prototypes with capacitive-sharing readout and small drift space
 - Small $10 \times 10 \text{ cm}^2$, working towards $30 \times 30 \text{ cm}^2$.
 - Synergy with Hall B luminosity upgrade (x 2-3 increase)
 - Beam test in Hall D
 - Spatial resolution of ~60 μ m (s) achieved, operating at 98% efficiency
 - Synergy with medical imaging: e.g., development of GEM-based proton computed tomography device and hadron therapy beam QA device (with recent beam test at HUPTI).
- Proceeding with prototypes of ESR 591 MHz single cell and 197 MHz crab cavity
 - Prototype RF designs complete and reviewed
 - Fabrication plans reviewed, materials ordered
 - Dies and tooling in fabrication
 - First article cryomodule designs started
 - Successful test of 5-mode harmonic kicker in UITF
- Successful test of 5-mode harmonic kicker in UITF
- SHC ERL studies underway

Detector R&D (NP Applications) – New Initiatives


US-based MicroPattern Gaseous Detector Center -A Community User Facility


- Large number of US institutions engaged in MPGD activities
 - o Limited inter-disciplinary interaction between the institutions
- The community needs a dedicated US-based MPGD User Facility with a:
 - Production workshop like to the SiDet Facility for at FNAL
 - Detector R&D Lab like the RD51 / GDD Lab at CERN
- US-MPGD center will be greatly beneficial for EIC detector development
- Jefferson Lab is an excellent place for an MPGD center in the US
 - At the forefront in the deployment of large MPGDs in NP experiments
 - In-house MPGD expertise and beam test capabilities for MPGD tests





Biomedical Research & Innovation Center

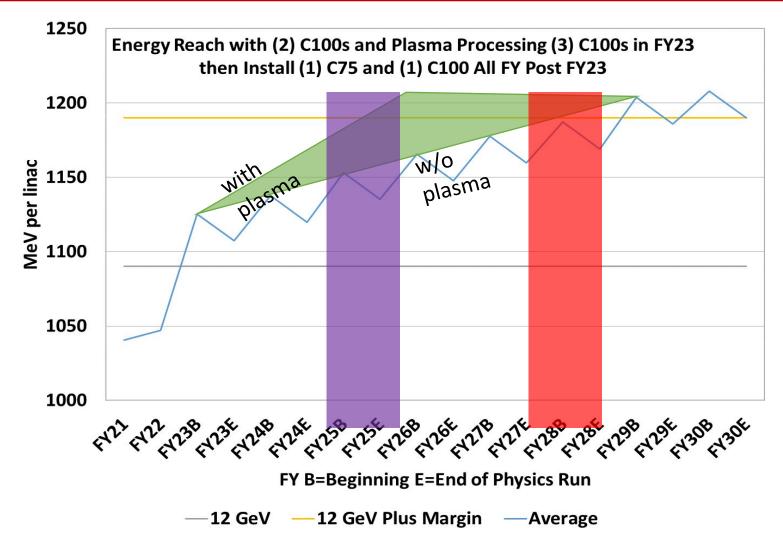
Leverage nuclear science capabilities for biomedical applications

Launch event this month with Dr. Berhe at Jefferson Lab!

Accelerator Highlights – CEBAF near future

• Injector upgrade

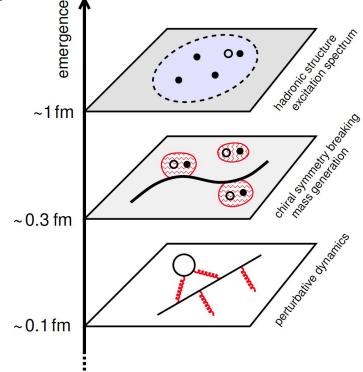
- CEBAF beamline rebuilt with 200 keV magnets, upgraded Wien filters and improved vacuum quality
- SRF Booster (10MeV, 2&7 cell) commissioned at UITF 2021/22 and will be installed in CEBAF during FY23 SAD
- The upgrade reduces helicity correlated asymmetries for the Parity Quality Beam program


<u>Plasma processing</u>

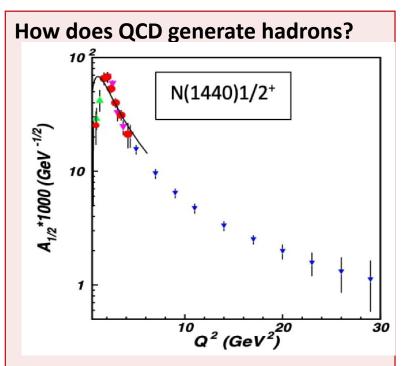
- Developed for C100 cryomodules
- Performed 40 cavity process cycles to establish procedures
- Application to C100-05R in June '22 showed an overall 12 MV gain
- Will plasma-process 3 CMs in CEBAF tunnel during FY23 SAD
- Developing the process for C20/C50/C75
- Incorporation into CPP provides a faster path toward 12 GeV
- Developing AI/ML for use in CEBAF Control Room
 - Broad program across Field Emission Management, SRF Fault Identification/Prediction, Heat Load/Trip Rate Management and Beam Transport Error Mitigation
 - Continuing use of NDX neutron detectors for gradient optimization and reduction of radiation levels

Energy Reach with and w/o plasma processing

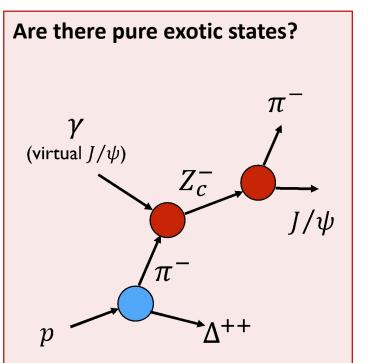
- Assume 2CM per year (one new C75)
- Then w/o plasma can get 12GeV with 100MeV margin around beginning of FY28
- If plasma-process 3CM/year, and it will give 30MeV increase (=15MeV/linac increase), climb up in energy accelerates (green triangle)
- With plasma, optimistically can get to 12GeV with 100 MeV margin in the middle of FY25
- Large uncertainly in predictions, need results of this SAD plasma treatment and data from C20/C75/C50 plasma development to give more accurate estimate


Computational Capability for 12 GeV Transitioning EIC Era

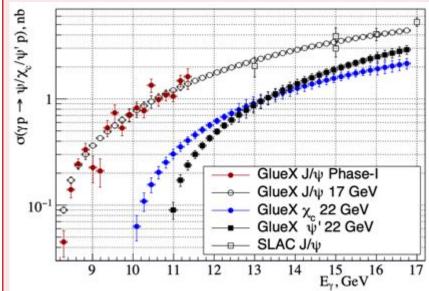
- Strong track record of accomplishments supporting the 12 GeV program and moving towards "self driving" EIC detectors.
 - SciComp Systems:
 - Deploying xrootd; deployed SciTokens
 - EIC resource delivery
 - ePIC adopts JLab software framework
 - AI/ML:
 - Experimental Control—online calibration of the GlueX Central Drift Chamber
 - Hydra AI/ML monitoring in use in all four halls
 - Streaming Readout (SRO):
 - Streaming software chain deployed for GlueX and EIC
 - Synergistic with ASCR funded activities and LDRDs
- Goals:
 - Production real-time applications for 12 GeV program
 - Support for ePIC S&C conceptual design report
 - FY29: Proof of concepts for EIC self-driving detectors with full SRO, real-time calibration, and data/theory/simulation comparisons.
- EIC Joint Institute for Computing and Software established
 - Provides coordination and execution of host lab responsibilities in computing


A CEBAF Energy Upgrade – the Big Picture

- How do hadrons emerge from fundamental QCD principles?
- Study of the quark-gluon dynamics which determines the structure of hadrons and hadron-hadron interactions
 - Spectroscopy
 - Excited hadronic states
 - Hadron structure
 - TMDs, GPDs
 - Hadronization
- What an upgrade brings:
 - Builds upon a world-leading program of investigation in the valence region (x>~0.1)
 - Validation of theory (we rely on QCD inspired models in this regime)
 - Deeper access to and understanding of the structure of strongly-interacting quark gluon systems
 - Opens new opportunities for studies of the charm sector



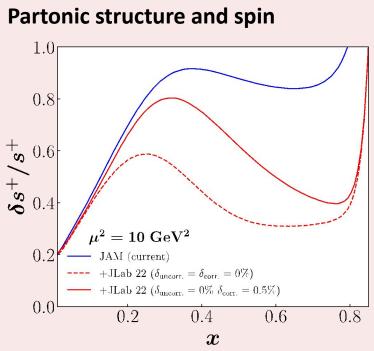
Scientific vignettes for the 22 GeV upgrade



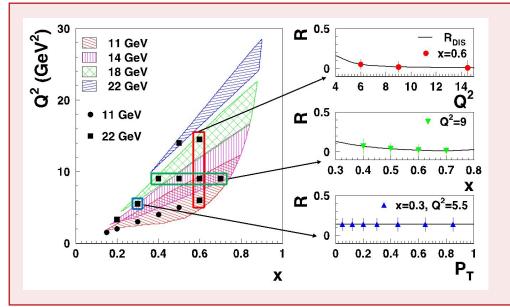
- Q^2 evolution of the $\gamma_v pN^*$ electrocouplings could offer an insight into hadron mass generation and the emergence of the N* structure from QCD
- Simulations indicate JLab22 is the only foreseeable facility to extend these measurements up to 30 GeV² and down to α_s/π=0.15 where non-and perturbative QCD coexist.

Direct (photon) probe of the $Z_c \rightarrow J/\psi\pi$ coupling without rescattering effects provides <u>unique complementary data to</u> constrain interpretation of e^+e^- data.

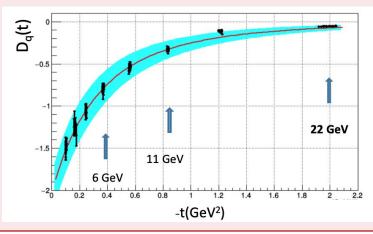
Can we harness threshold charmonium production to probe proton/gluon properties?

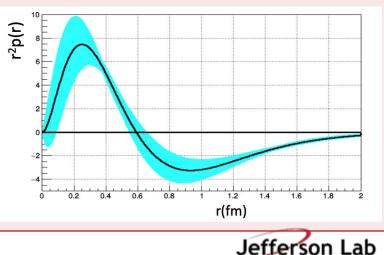


Exclusive charmonium production near threshold probes gluon/mass properties of proton (mass radius, gravitational form factors, D-term, anomalous contribution to proton mass), however


- assuming factorization
- assuming two-gluon exchange

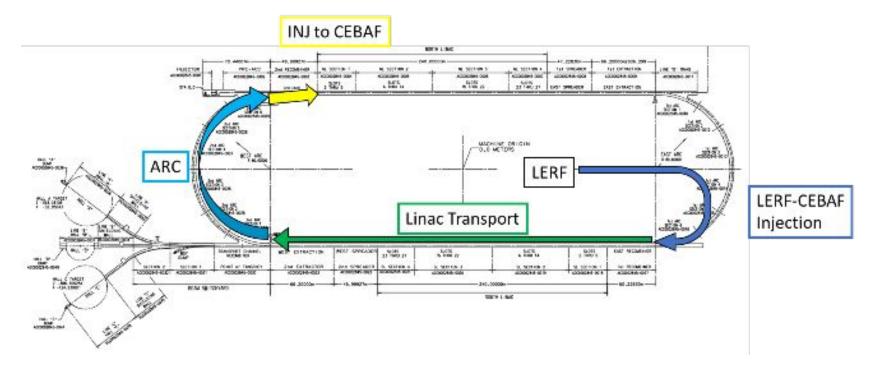
Scientific vignettes for the 22 GeV upgrade


- Impact of JLab 22 GeV DIS PV data with the SoLID detector on nucleon's s+ = s + s PDF.
- The nucleon strange sector is largely unexplored, with an up to 80% uncertainty in the s+ = s + s PDF. Parity violating Deep Inelastic Scattering (PVDIS) of electrons offers a unique opportunity to provide data for global PDF extractions.



Enhanced 3D imaging

A combined 11 and 22 GeV SIDIS program will increase our ability to measure a variety of SIDIS SFs acrossan enhanced, multidimensional phase


DVCS provides access to gravitational form factors

Feasible, cost effective, innovative path from positrons to 22 GeV

- Capitalizing on recent science insights and US-led accelerator science and technology innovations, develop a staged program at the luminosity frontier:
- Positrons (e+) in the LERF (former FEL) with transport to CEBAF
- Injection energy upgrade for 650 MeV Electron (e-) in LERF
- Replace arcs on each side with new FFA permanent magnet arcs to upgrade to 22 GeV

Notional CEBAF & upgrade schedule (FY24 – FY42)

- Accelerator/engineering team have worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; early positron source development also shown

	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Moller (funded)																		
SoLID (science rev)																		
Positron Source Dev																		
PreProject/Project Dev																		
Upgrade Phase 1																		
Transport comm/e+																		
Upgrade Phase 2																		
CEBAF Up																		

- FY23 \$\$
- Phase 1: tie LERF to CEBAF & injector for e+
- Phase 2: High Energy Upgrade (includes FFAs) \$244M (\$188M \$366M)
- Total cost (Class 4 estimate)
- Pre-R&D (FY25 FY27)

\$345M (\$265M – \$517M) \$3.0M/year (+\$0.5M/year in LDRD)

\$101M (\$78M – \$152M)

JLab into the future

- QCD manifests fascinating complexity ('more is different')
 - Large research facilities like CEBAF are required to understand the implications of QCD in experiments
 - CEBAF has a long program ahead that is complementary to the envisioned EIC program (science case)
- CEBAF will remain the prime facility for fixed target electron scattering at the luminosity frontier
 - A groundbreaking experimental program has been developed stretching well into the 2030s
 - MOLLER is fully funded, and SoLID enables CEBAF to reach its full intensity capability
- We are developing an exciting technical path toward e+ @ 12 GeV and e- @ 22 GeV
 - Accelerator R&D in FY25, FY26, and FY27

Perspective

- The Lab is in a strong position moving forward
- Supportive funding for CEBAF Operations
- Our priorities are clear:
 - Ensuring that the 12 GeV program is successful in all facets
 - Moving EIC forward
 - Diversifying Jefferson Lab's scientific mission
 - Laying the groundwork for an exciting role for CEBAF in the EIC era – positrons and 22 GeV
 - Increasing our impact in accelerator S&T

Thank you!

