PrimEx Project with the CEBAF 22 GeV Energy Upgrade

A. Gasparian NC A&T State University, Greensboro NC USA

for the PrimEx Collaboration

Outline

- PrimEx program at JLab
- Decay widths at 22 GeV (nuclear and electron targets)
- π^0 transition form factor on atomic electron
- Proposed experimental setup
- Kinematics and geometrical acceptances
- Summary

The PrimEx Project at JLab

- Experimental program:
- 1) Precision measurements of two-photon decay widths (real photon exchange):
 - a) $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ b) $\Gamma(\eta \rightarrow \gamma \gamma)$
 - c) $\Gamma(\eta' \rightarrow \gamma \gamma)$
- 2) Transition Form Factors at very low Q² range, 0.001-0.5 GeV²/c² (virtual photon exchange):
 - a) $F(\gamma\gamma^* \rightarrow \pi^0)$

b)
$$F(\gamma\gamma^* \rightarrow \eta)$$

c) $F(\gamma\gamma^* \rightarrow \eta')$

Physics reach:

- a) precision tests of chiral symmetry and anomalies
- b) determination of light quark mass ratio
- c) mixing angles
- d) π^0 , η and η' interaction electromagnetic radii
- e) Is η' an approximate Goldstone boson?
- f) Critical contributions to HLbL calculations for $(g-2)_{\mu}$

Included in the JLab @12 GeV upgrade CDR

- Challenges of the method:
 - measure the cross section at very forward angles with high precision
 - > extract the Primakoff process from competing nuclear processes

An Example: $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Decay width Measurement (PrimEx Experiments in Hall B at JLab)

- PrimEx-I performed in Hall B in 2004 using:
- high resolution, high intensity Hall B photon tagging facility.
- new high resolution large acceptance hybrid EM calorimeter (HyCal):
 - 34 x 34 matrix of 2.05 x 2.05 x 18 cm³
 PbWO₄ shower detectors
 - 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
 - ♦ Total area: 118 x 118 cm²
- set of 12 scintillator veto counters.
- new pair spectrometer for photon flux control at high intensities.
- Upgraded PrimEx-II performed in 2010

e beam

PrimEx-II: Extracted Differential Cross Sections

- To extract $\Gamma(\pi^0 \rightarrow \gamma \gamma)$:
 - angular and energy resolutions smeared the theoretical distributions to fit the experimental cross sections.

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: Final Result from PrimEx

Theory and Experiments

$\Gamma(\eta \rightarrow \gamma \gamma)$ Decay Width Experiment in Hall D

- ✓ Tagged photon beam (~8.0-11.7 GeV)
- ✓ PS and TAC for photon flux control
- ✓ Liquid ⁴He target (~4% R.L.)
- Compton scattering (FCAL and CCAL) to control
- overall systematics
- ✓ Data taking completed in December 2022.
- Expected total uncertainty: 5 10%

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Measurement with the 22 GeV Upgrade (on Atomic Electron)

Primakoff effect on atomic electron

 $\gamma + e \to \pi^0 + e$

$$\frac{d\sigma_{\rm Pr}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} \sin^2\theta_{\pi}$$

- Advantages of using atomic electron target
 - no nuclear (hadronic) processes
 - no nuclear absorption processes
 - target is point-like, no form factors
 - detection of recoil electron is feasible
 - ✓ sub-percent uncertainty in $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ with 22 GeV is realistic
- Requires threshold energy:

$$\Xi_{\gamma} = ((m_{\pi 0} + m_{e})^2 - m_{e}^2)/(2 m_{e}) \approx 18 \text{ GeV}$$

• Can be performed with 22 GeV energy upgrade

$\Gamma(\eta \rightarrow \gamma \gamma)$ and $\Gamma(\eta' \rightarrow \gamma \gamma)$ Experiments with 22 GeV Upgrade (on Nuclear Targets)

Transition Form Factor Measurements on Nuclear Targets with the 22 GeV Energy Upgrade

- "cleaning" dipole magnet cannot be used
 - relatively large electromagnetic background
- Sub percent resolutions in cross section are needed :
 - not an easy experiments
- Will use nuclear targets, similar to PrimEx
 - background from the nuclear processes is still present

$F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (on Atomic Electron with 22 GeV Upgrade)

- Use atomic electron as a target $e^- + e^- \rightarrow e^2 + e^- + \pi^0$ $\pi^0 \rightarrow \gamma\gamma$
- Requires threshold energy for γ^*

$$E_{\gamma^*} = ((m_{\pi 0} + m_{e^-})^2 - m_{\gamma^*}^2 - m_{e^-}^2)/(2 m_{e^-})$$

for $Q^2 \approx 0.001 \text{ GeV}^2$: $E_{\gamma^*} \approx 18.1 \text{ GeV}$

- Experimental method: detect all 4 final state particles:
 - ✓ scattered electrons
 - ✓ recoil electrons
 - \checkmark two photons from π^0 decay
- Will provide full kinematical control:
 - reaction identification;
 - total energy conservation;
 - ✓ total 3-momentum conservation.

$F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (on Atomic Electron with 22 GeV Upgrade)

- Primakoff production on atomic electron:
 - $e^{-} + e^{-} \rightarrow e^{+} + e^{-} + \pi^{0}$ $\pi^{0} \rightarrow \gamma \gamma$

- Advantages of using atomic electron target
 - no nuclear (hadronic) processes
 - no nuclear absorption processes
 - target is point-like, no form factors
 - detection of recoil electron is feasible
 - ✓ sub-percent uncertainty in $F(\gamma\gamma^* \rightarrow \pi^0)$ is realistic

Proposed Experimental Setup (Use PRad experimental setup)

- Target to detector distance: $Z \approx 10 \text{ m}$
- Detection of the forward scattered electrons in HyCal/GeM (low Q² range: 10⁻³ 10⁻¹ GeV²)
- $\pi^0 \rightarrow \gamma \gamma$ detection with the HyCal calorimeter
- Detection of the Recoil electron:
 - ✓ with the HyCal calorimeter (at $Q^2 \approx 10^{-3} 10^{-2} \text{ GeV}^2$ range);
 - ✓ or/and with the scintillator ring close to target from the PRad-II experiment (for $Q^2 \approx 10^{-1} \text{ GeV}^2$)

Experimental Setup (Side View)

 $F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (Reaction Kinematics at $E_e = 22$ GeV)

$$e^{-} + e^{-} \rightarrow e^{+} + e^{-} + \pi^{0}$$

 $\pi^{0} \rightarrow \gamma \gamma$

- Scattered electron in HyCal (provides low Q² range: $\approx 10^{-3} - 10^{-1} \text{ GeV}^2$): $\vartheta \approx 0.3^0 - 3^0$, $E_{e^2} \approx 0.3 - 3.5 \text{ GeV}$
- The γ^* and π^0 are produced on extremely forward directions with energies $\approx 20 \text{ GeV}$
- Recoil electron angles: (forward 90⁰)
- $\pi^0 \rightarrow \gamma \gamma$ decay is very forward due to high energies

 $F(\gamma\gamma * \rightarrow \pi^{0}) \text{ Transition Form Factor Experiment}$ (Geometrical Acceptance at E_e = 22 GeV)

- Only GEM/HyCal are used for all 4 final state particles (including the Recoil Electrons)
- Scattered electron in HyCal: $\vartheta_{e'} \approx 0.3^0 - 3^0$, $E_{e'} \approx 0.3 - 3.5 \text{ GeV}$

 $E_{\gamma} > 0.5 \text{ GeV}$ from $\pi^0 \rightarrow \gamma \gamma$ decayRecoil Electron $\vartheta_{recoil e} = 0.3^0 - 3^0$ Recoil Electron $E_{recoil e} > 0.03 \text{ GeV}$ Recoil Electron

 $F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (Reaction Kinematics at $E_e = 22$ GeV and Relatively High Q² Range (~10⁻¹ GeV²)

• HyCal angular coverage at Z=10 m:

 $\vartheta \approx 0.3^{\circ} - 3^{\circ}$

 For the Q² ~ 0.1 GeV² range recoil electrons are out of the HyCal acceptance

The Proposed Experimental Setup: New Scintillator Ring (similar to PRad-II experiment)

 Add a scintillator ring like the PRad-II experiment

 $F(\gamma\gamma * \rightarrow \pi^{0}) \text{ Transition Form Factor Experiment}$ (Geometrical Acceptance at E_e = 22 GeV)

 Detection of all 4 final state particles in HyCal (including the Recoil electron)

Summary

- The CEBAF 22 GeV energy upgrade will significantly enhance the PrimEx experimental program at JLab.
- The sub-percent measurement of the Γ(π⁰→γγ) transition form factor at low Q² range on the atomic electron will provide a critical input to the current (g-2)_μ anomaly in physics.
- It will provide a unique opportunity to measure the $\pi^0 \rightarrow \gamma\gamma$ decay width with a sub-percent accuracy, providing a critical information for fundamental symmetries in QCD.
- It will provide a critical opportunity for the $\eta' \rightarrow \gamma \gamma$ decay width measurement for the first time providing a critical information for fundamental symmetries in QCD.
- All these experiments are easily feasible and do not require a "large scale funding".

The PrimEx project was supported in part by NSF MRI award PHY-0079840 My work is supported in part by research award NSF PHY-PHY-1812421

Physics Motivation: Symmetries in QCD

• Classical QCD Lagrangian in Chiral limit is invariant under:

 $SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$

- Chiral SU_L(3)xSU_R(3) spontaneously broken:
 - 8 Goldstone bosons (π,K,η)
- U_A(1) is explicitly broken:
 (axial or chiral anomaly)
 - $\succ \quad \Gamma(\pi^0 \rightarrow \gamma \gamma), \, \Gamma(\eta \rightarrow \gamma \gamma), \, \Gamma(\eta' \rightarrow \gamma \gamma)$
 - > mass of η_0
- quarks are massive and different, SU(3) is broken:
 - Goldstone bosons are massive
 - > mixing of $\pi^0 \eta \eta'$

The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Transition Form Factor Measurements on Electron Target (X-Y distribution of events on HyCal)

Transition Form Factor Measurements on Atomic Electron (combination of HyCal/GEM and Scintillator Ring)

 $E_e = 22 \text{ GeV}$ $Q^2 = 0.01 \text{ GeV}^2$

Transition Form Factor Measurements on Electron Target (kinematical distributions)

Transition Form Factor Measurements on Electron Target (Experimental Resolutions)

 $E_e = 22 \text{ GeV}$ $Q^2 = 0.01 \text{ GeV}^2$

Transition Form Factor Measurements on Electron Target

Hybrid EM Calorimeter (HyCal)

Combination of PbWO₄ and Pb-glass detectors (118x118 cm²)

- 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO₄ shower detectors (1152 PbWO₄ detectors)
- ✓ 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
- 2 x 2 PbWO₄ modules removed in middle for beam passage
- ✓ ≈7.5 m from target
- Good energy and position resolutions:
 - ✓ $\sigma_{\rm E}$ / E = 2.6% / √E
 - \checkmark σ_{xy} / E = 2.7 mm/ $\sqrt{}$ E
- Good photon detection efficiency (≈100%)
- Served in 3 precision experiments!

front view, before Light Monitoring System assembly

Transition Form Factor Measurements on Electron Target

A. Gasparian

27

PrimEx Approach for a New Generation Primakoff Experiment

- Use tagged photon beam:
 - better knowledge of photon flux
 - energy and timing of incident photons
- Parallel measurement of purely QED processes to control/verify the cross section on 1% level:
 - ✓ Compton scattering from target electrons $(\gamma + e^- \rightarrow \gamma + e^-)$
 - ✓ e^+e^- Pair production from target $(\gamma + {}^{12}C \rightarrow e^+ + e^- + {}^{12}C)$
- Use high resolution electromagnetic calorimeter:
 - ✓ better π^0 invariant mass resolution
 - ✓ better π^0 production angle resolution
 - less background in "event selection"
- Use particle ID detectors for charged background separation:
 - reduction of background at event selection stage
- Monitor photon flux at high intensities (with Pair Spectrometer):
 - ✓ photon flux measurement on 1% level