Search for the Axion-Like Particle via the Primakoff effect

lgal Jaeglé

Thomas Jefferson National Accelerator Facility

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop January 25, 2023

ijaegle@jlab.org (JLab)

Table of contents

Introduction

2 Primakoff process

3 Setup

4 Selection criteria

- 5 Detection efficiency
- 6 Expected sensitivity

Conclusion

Introduction

Robust evidence of new physics and many candidates

Energy budget

Dark matter candidates

JLab@22GeV will open new opportunities to probe New Physics Beyond Standard Model

	0.11		1 11	
11260		h org		1 n h '
пасы	ic@jia	D.OIE	1.0	Lau.
1.0				

ABC reactions

Atomic recombination and deexcitation, Bremsstrahlung and Compton responsible for the solar axion flux in axion models.

Focus on Primakoff photoproduction process

ijaegle@jlab.org (JLab)

Analogy to Primakoff photoproduction of η -meson

 $\gamma^4 \text{He} \rightarrow \eta^4 \text{He}$, theoretical differential cross-section known:

•
$$\frac{d\sigma_T}{d\Omega} = \frac{d\sigma_P}{d\Omega} + \frac{d\sigma_{NC}}{d\Omega} + 2\sqrt{\frac{d\sigma_P}{d\Omega}} \frac{d\sigma_{NC}}{d\Omega} \cos(\phi) + \frac{d\sigma_{NI}}{d\Omega}$$

• Primakoff contribution is directly proportional to the $\Gamma_{\eta \to \gamma\gamma}$ decay width

$$\frac{d\sigma_P}{d\Omega} = \left[\Gamma_{\eta \to \gamma\gamma}\right] \frac{8\alpha Z^2}{m_{\eta}^2} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2(\theta_{\eta}^{lab})$$

• Cross-section for $E_{\gamma} = 10$ GeV (left) and $E_{\gamma} = 20$ GeV (right):
• $\Gamma_{\eta \to \gamma\gamma} = 510$ eV and $\phi = 57.5^{\circ}$
• $\Gamma_{\eta \to \gamma\gamma} = 510$ eV and $\phi = 57.5^{\circ}$

2 θ_{η} [°]

• Primakoff contribution increases with $E_{\gamma} \nearrow$

Overlap between Primakoff and background (Coherent & Interference) decreases with • $E_{\gamma} \nearrow$

dσ/d 0.5

Beam energy impacts the measurements

 θ_n [°]

ijaegle@jlab.org (JLab)

Analogy to Primakoff photoproduction of η -meson

 $\gamma^{202} \mathrm{Pb} \to \eta^{202} \mathrm{Pb},$ theoretical differential cross-section known:

•
$$\frac{d\sigma_T}{d\Omega} = \frac{d\sigma_P}{d\Omega} + \frac{d\sigma_{NC}}{d\Omega} + 2\sqrt{\frac{d\sigma_P}{d\Omega}}\frac{d\sigma_{NC}}{d\Omega}\cos(\phi) + \frac{d\sigma_{NL}}{d\Omega}$$

• Primakoff contribution is directly proportional to the $\Gamma_{\eta \to \gamma \gamma}$ decay width

$$\frac{\sigma_{P}}{I\Omega} = \Gamma_{\eta \to \gamma \gamma} \frac{8 \alpha Z^{2}}{m_{\eta}^{3}} \frac{\beta^{3} E^{*}}{Q^{4}} |F_{e.m.}(Q)|^{2} \sin^{2}\left(\theta_{\eta}^{\text{lab}}\right)$$

• Cross-section for $E_{\gamma} = 10$ GeV (left) and $E_{\gamma} = 20$ GeV (right):

$$\Gamma_{\eta \to \gamma \gamma} = 510 \text{ eV} \text{ and } \phi = 57.5^{\circ}$$

• Primakoff contribution increases with Z^2

Atomic number impacts the measurements

ijaegle@jlab.org (JLab)

<u>d</u>

Primakoff photoproduction of ALP

 $\gamma A \rightarrow Aa$, theoretical cross-section:

•
$$\frac{d\sigma_P}{d\Omega} = \left[\Gamma_{a \to \gamma\gamma} \right] \frac{8\alpha Z^2}{m_a^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \left(\theta_a^{\text{lab}} \right)$$

•
$$\Gamma_{a \to \gamma\gamma} = \frac{c_\gamma^2 m_a^3}{64\pi \Lambda^2}$$

•
$$\frac{c_\gamma}{\Lambda}, \text{ axion coupling to photon, unit eV}$$

• Off nuclei and
$$E_{\gamma} = 20 \text{ GeV}$$

Off Atomic electron

Atomic electron contribution below 50 MeV/c^2 non-negligible

ijaegle@jlab.org (JLab)

ALP branching ratio

Golden modes for GlueX/JEF:

• $a \rightarrow \gamma \gamma$ • $a \rightarrow \pi^0 \pi^+ \pi^-$ • $a \rightarrow \gamma \pi^+ \pi^-$ • $a \rightarrow \eta \pi^+ \pi^-$ D. Aloni et al. PRL 123 (2019), arXiv:1811.0347

8 / 14

The GlueX setup

Photon-beam produced by (coherent) bremsstrahlung

NIMA 987 164807 (2021) - arxiv:2005.14272

• But, for this study, FDC, air, and DIRC replaced by vacuum

• Lead target (of ~0.3mm or 4%RL) and FCAL positions optimized for each mass scanned Typical integrated luminosity, $\mathcal{L}\sim 200~pb^{-1}$ per 100 days

ijaegle@jlab.org (JLab)

Selection criteria

Two clusters in Forward Calorimeter:

- Barrel Calorimeter used to veto hadronic backgrounds
- Time-Of-Flight wall used to veto charged particles
- Elasticity required
- $heta_{\gamma\gamma}^{
 m lab} \leq 0.5^{
 m 0}$ and 1° for ${
 m E}_{\gamma} = 10$ GeV and 20 GeV, respectively

 $\begin{array}{l} \mbox{Example with Carbon target, SRC data set} \\ \gamma_{\rm beam}{}^{12}{\rm C} \rightarrow \eta/\pi^{012}{\rm C} \mbox{ and } \eta/\pi^0 \rightarrow \gamma_1\gamma_2 \\ \mbox{In Primakoff process, most of the energy is} \\ \mbox{transferred to } \eta\mbox{-meson} \\ \mbox{=>} {\rm E}_{\gamma}^{\rm beam} - {\rm E}_{\gamma_1}^{\rm cluster} - {\rm E}_{\gamma_2}^{\rm cluster} \sim 0 \mbox{ (elasticity)} \end{array}$

Clear signal but includes Primakoff and (in)coherent events, and non-negligible backgrounds mainly target (hadronic) and beamline ijaegle@jlab.org (JLab) Search for ALP JLab@22GeV 10 / 14

Optimized positions

For the target and FCAL

- Punzi FOM =
 ^ϵ/_{√a+B}, ϵ signal detection efficiency, a = 3 (significance) and B: hadronic background coming from Pb target
- 16 positions for 16 mass regions to scan

• Punzi FOM for $m_a = 300 \text{ MeV}/c^2$

Signal detection efficiency and resolution

Efficiency Resolution $E_{\gamma} = 10 \text{ GeV}$ $E_{\gamma} = 10 \text{ GeV}$ $E_{\gamma} = 20 \text{ GeV}$ $E_{\gamma} = 20 \text{ GeV}$ 0.06 0.8 Resolution [GeV/c²] 700 0.6 Efficiency 0.4 0.2 0.5 0.5 $m_{\rm a} \, [{\rm GeV}/c^2]$ $m_{\rm a} \, [{\rm GeV}/c^2]$

• Detection efficiency above 100 MeV/ c^2 is improved with $E_{\gamma} \nearrow$

• Resolution for all masses is improved with $E_\gamma \nearrow$ Background coming from the target estimated for each mass scanned $\pm 3\sigma$

ijaegle@jlab.org (JLab)

Very preliminary

Very preliminary expected sensitivity

No bump search possible at $\pi^0,\,\eta,\,\omega,$ and η^\prime masses

• Expected sensitivity for 200fb^{-1} and Lead target

JLab@22GeV is competitive

ijaegle@jlab.org (JLab)

Conclusion

JLab@22GeV will open new opportunities to probe New Physics Beyond Standard Model

- Many different models can be tested (and will be studied in the coming weeks)
- Preliminary study for $a \rightarrow \gamma \gamma$ is presented
- Note, other decays are possible and will be studied in the coming weeks
- A 22GeV beam is naturally increasing Primakoff cross-section
- A heavy target is also naturally increasing Primakoff cross-section
- For $200pb^{-1}$ collected at 16 different distances between target and FCAL
 - A competitive sensitivity is expected
 - If background is coming from the target only ie FDC, air, and DIRC are replaced by vacuum