New Physics in the MeV-GeV window Maxim Pospelov U of Minnesota and FTPI

The Search for Feebly Interacting Particles

Gaia Lanfranchi, Maxim Pospelov, Philip Schuster

Published in: Ann. Rev. Nucl. Part. Sci. 71 (2021) 279-313

Plan

- 1. Introduction.
- A. Is there a BSM physics and where it may hide?
- B. The notion of dark sectors/feebly interacting particles (FIPs).
- 2. A closer look at dark photon, and related models.
- 3. Conclusions

Clues for new physics

1. Precision cosmology: 6 parameter model (A-CDM) correctly describes statistics of 10⁶ CMB patches. $\int_{u^{0}} \int_{u^{0}} \int_{u^{0}}$

2. *Neutrino masses and mixing:* Give us a clue [perhaps] that

2000

M1 = 175.3 GeV

1000

there are new matter fields beyond SM. Some of them are not charged under SM.

3

3. Theoretical puzzles: Strong CP problem, vacuum stability, hints on unification, smallness of m_h relative to highest scales (GUT, M_{Planck})

4. *"Anomalous results":* muon g-2, B-physics anomalies, SBN neutrino anomalies, Hubble constant tension etc.

SM as an Effective Field Theory

Typical BSM model-independent approach is to include all possible BSM operators once very heavy new physics is integrated out

 $L_{SM+BSM} = -m_H^2 (H^+_{SM} H_{SM}) + \text{all dim 4 terms} (A_{SM}, \psi_{SM}, H_{SM}) + (Wilson coeff. / \Lambda^2) \times Dim 6 \text{ etc} (A_{SM}, \psi_{SM}, H_{SM}) + \dots$

For example:

$$\frac{1}{\Lambda^2}(\bar{e}e)(\bar{q}q)$$

But is this framework really all-inclusive? – it is motivated by new heavy states often with sizeable couplings. The alternative possibility for New Physics – weakly coupled light new physics - is equally viable

SM as an Effective Field Theory in the presence of FIPs

Typical BSM model-independent approach is to include all possible BSM operators + light new states explicitly.

 $L_{SM+BSM} = -m_H^2 (H^+_{SM}H_{SM}) + \text{all dim 4 terms } (A_{SM}, \psi_{SM}, H_{SM}) + (W.\text{coeff. } /\Lambda^2) \times \text{Dim 6 etc} (A_{SM}, \psi_{SM}, H_{SM}) + \dots$ all lowest dimension portals $(A_{SM}, \psi_{SM}, H, A_{DS}, \psi_{DS}, H_{DS}) \times \text{portal couplings}$

+ dark sector interactions (A_{DS} , ψ_{DS} , H_{DS})

SM = Standard Model

DS – Dark Sector

Minimal portal interactions

Let us *classify* possible connections between Dark sector and SM $H^{*}H(\lambda S^{2} + A S)$ Higgs-singlet scalar interactions (scalar portal) $B_{\mu\nu}V_{\mu\nu}$ "Kinetic mixing" with additional U(1)' group (becomes a specific example of $J_{\mu}^{\ i}A_{\mu}$ extension) *LH N* neutrino Yukawa coupling, *N* – RH neutrino $J_{\mu}^{\ i}A_{\mu}$ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the *LHN* portal...

Dim>4

 $J_{\mu}^{A} \partial_{\mu} a / f$ axionic portal

$$\mathcal{L}_{\text{mediation}} = \sum_{k,l,n}^{k+l=n+4} \frac{\mathcal{O}_{\text{med}}^{(k)} \mathcal{O}_{\text{SM}}^{(l)}}{\Lambda^n},$$

Owing to small couplings, such particles represent "dark sector" 6

- "Effective" charge of the "dark sector" particle χ is Q = e × ε (if momentum scale q > m_V). At q < m_V one can say that particle χ has a non-vanishing EM charge radius, $r_{\chi}^2 \simeq 6\epsilon m_{V}^{-2}$.
- Dark photon can "communicate" interaction between SM and dark matter. *It represents a simple example of BSM physics*.

Search for New Physics

In 2012-2013 LHC experiments discovered a new particle (Higgs boson) and a new force (Yukawa force). What do we know about forces in nature ?

Motivations for dark vectors and dark scalars

 Dark scalar is the only object that can have a super-renormalizable portal dim=3 to the Higgs boson. Can be connected to the Higgs mass naturalness via the so-called relaxion mechanism (selforganized criticality).

$$(H^{\dagger}H) \times m_{H}^{2} \longrightarrow (H^{\dagger}H) \times (m_{H}^{2} + c_{1}S + c_{2}S^{2} + ...)$$

- Dark scalar can help develop the 1st order EW phase transition and with extra CP-violation (provided e.g. by additional Higgs doublet) can lead to successful EW baryogenesis.
- Light dark photons can result from "neutral naturalness" approach
- Dark vectors/scalars can be DM themselves either freeze-in or oscillate like axion. Can be mediators for light WIMP models.
- Maybe behind certain anomalies (e.g. L_{mu} L_{tau} dark vector can "correct" muon g-2.)

Models vs Experiments

Vector

scalar

Benchmark Cases (MP and PBC, 2018)

- 1. Dark photon
- 2. Dark photon + light dark matter
- 3. Millicharged particles
- 4. Singlet scalar mixed with Higgs
- 5. Quartic-dominated singlet scalar
- 6. HNL, e-flavour dominance
- 7. HNL, μ -flavour dominance
- 8. HNL, τ -flavour dominance
- 9. ALPs, coupling to photons
- 10. ALPs, coupling to fermion
- 11. ALPs, coupling to gluons

Experimental proposals, mostly CERN

SHiP *Beam Dump* Flavour, possible BD NA62+ FASER LHC add-on MATHUSLA large LHC add-on Codex-B LHC add-on MilliQan LHC add-on NA64 missing momentum **KLEVER** flavour fixed target REDTOP IAXO axion exp ALPs-II axion exp

I hope that in the end, a clear strategy for building up CERN intensity frontier program will emerge, with new sensitivity to sub-EW scales 10

 \mathbf{v}

ALP

"Simplified models" for light DM some examples

• Scalar dark matter talking to the SM via a "dark photon" (variants: L_{mu} - L_{tau} etc gauge bosons). With $2m_{DM} < m_{mediator}$.

$$\mathcal{L} = |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} - \frac{1}{4}V_{\mu\nu}^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2} - \frac{\epsilon}{2}V_{\mu\nu}F_{\mu\nu}$$

• Fermionic dark matter talking to the SM via a "dark scalar" that mixes with the Higgs. With $m_{DM} > m_{mediator}$.

$$\mathcal{L} = \overline{\chi}(i\partial_{\mu}\gamma_{\mu} - m_{\chi})\chi + \lambda\overline{\chi}\chi S + \frac{1}{2}(\partial_{\mu}S)^2 - \frac{1}{2}m_S^2S^2 - AS(H^{\dagger}H)$$

After EW symmetry breaking *S* ("dark Higgs") mixes with physical *h* and can be light and weakly coupled provided that coupling A is small.

Take away point: these models have both stable (DM) and unstable (mediator) light weakly coupled particles.

Constraints and future sensitivity to Dark Photons

O(few GeV) mass, and $\varepsilon \sim 10^{-4}$ can be probed using experiments at JLab. (Plot from recent PBC studies)

Dark Matter through Dark Photon portal

- At the moment, neutrino and beam dump experiments provide best sensitivity in the light mass range.
- Beam dump scaling, ε⁴, is eventually to be overtaken by missing energy/momentum experiments with ε² scaling.
 (Newer NA64 results cross into relic density motivated territory)
- There is a nice complementarity with direct detection experiments that have a low detection threshold.

Search for Heavy Neutral Leptons

- Production channel is through prompt charm decay
 pp → c cbar → HNL.
- Detection is through HNL occasional decay via small mixing angle U, with charged states in the final state, e.g. π⁺μ⁻, π⁻μ⁺, etc.
- Decays are often slow, so that the sensitivity is proportional to (Mixing angle)⁴.

Constraints on Higgs-mixed scalars

Possible future improvements at NA62, SHiP, possibly SNB experiments, and new proposals such as MATHUSLA, CODEX-B, FASER etc.

Dark photons ++

Let's classify them into several cartegories

- 1. Dark photon: technically natural, UV complete, couple to a conserved current. $\varepsilon = ---$
- 2. B-L, L_{μ} - L_{τ} , and other anomaly free combinations: all of the above, but coupling constant g_X is small somewhat unusual. Strong constraints from neutrino physics.
- 3. Models coupled to the tree-level conserved current broken by anomalies. E.g. gauged baryon number, or lepton number. Presumes cancellation of anomalies at high-energy. Nice low energy behaviour, weak constraints on gauged baryon number?
- 4. Models coupled to a non-conserved current. (e.g. vector particle coupled to an axial-vector current)
- Phenomenology-driven demand often force speculators to consider 3 and 4. (proton charge radius, "X17" anomaly)

Hypothetical Z' (any Z' coupled to L_{μ}) contributes constructively to cross section.

In the heavy Z' limit the effect simply renormalizes SM answer:

~8-fold enhancement of cross section

Muon pair-production by neutrinos

VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

Neutrino Tridents and W-Z Interference

S. R. Mishra, ^(a) S. A. Rabinowitz, C. Arroyo, K. T. Bachmann, ^(b) R. E. Blair, ^(c) C. Foudas, ^(d) B. J. King,

FIG. 1. Feynman diagram showing the neutrino trident production in ν_{μ} -A scattering via the W and the Z channels.

NuTeV results: Events/(0.5 GeV) 15 30 (a) (b)10 20 5 10 0 10 15 5 5 10 15 E_{HAD} (GeV) E_{HAD} (GeV)

Trident production was seeing with O(20) events, and is fully consistent with the SM destructive $\mathbb{W}_{+}\mathbb{Z}$ interference.

19

Recent constraint from BaBar on L_{μ} - L_{τ}

- Absence of peaks in invariant mass improves constraints in 210 MeV 4 GeV window.
- Below 2muon threshold, L_{μ} - L_{τ} model is the most difficult: Z' \rightarrow neutrinos. NA64 with muons, or LDMX?

Non-conserved currents will be sensitive to high-mass scales through loops

• It is well known that there is an enhancement of non-conserved currents inside loops leading to FCNC. The key – access to momenta $\sim m_W$ and m_t .

• For a fully conserved current, like couplings of dark photon, Amplitude $\sim G_F m_{meson}^2$ For a non-conserved current, such as Higgs-mixed scalar Amplitude $\sim G_F m_{top}^2$

Gauge symmetry broken by anomalies

- Consider $L = g_X X_\mu \Sigma(\overline{q} \gamma_\mu q)$ which is the coupling of a vector particle "X" to a baryon current. If we stay at the tree level, then the current is exactly conserved, and nothing would be wrong with such a U(1)_{baryon}.
- However [and famously], this symmetry is broken by the triangle chiral anomaly (Adler++):

$$\partial^{\mu} J^{\text{baryon}}_{\mu} = \frac{\mathcal{A}}{16\pi^2} \left(g^2 W^a_{\mu\nu} (\tilde{W}^a)^{\mu\nu} - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right)$$

• The vector X cannot stay massless, and a strong interaction will develop at scales $\leq \frac{4\pi m_X}{g_X} / \left(\frac{3g^2}{16\pi^2}\right)$ (Preskill) unless such theory is UV completed, and anomaly is cancelled in full theory

$Z \rightarrow \gamma X decay$

At one loop, Z boson will decay to γ X final state, and the emission of longitudinal scalar is m_Z²/m_X² enhanced. (A=3/2 for the baryonic X).

$$\Gamma_{Z \to \gamma X} \simeq \frac{\mathcal{A}^2}{384\pi^5} g_X^2 g^2 g'^2 \frac{m_Z^3}{m_X^2}$$

This corresponds to

$$\frac{\Gamma_{Z \to \gamma X}}{\Gamma_Z} \simeq 10^{-7} \mathcal{A}^2 \left(\frac{\text{TeV}}{m_X/g_X}\right)^2$$

- One can use previous LEP measurements for Z→ gamma + invisible, as well as Tevatron Z→ gamma + pi0.
- LHC will have huge sensitivity through studies of $l^+l^+\gamma$ final states.

FCNC amplitudes at two loop

Anomalous [two-loop] contributions to FCNC amplitudes are important

$$\mathcal{L} \supset g_{Xd_id_j}X_\mu \bar{d}_j \gamma^\mu \mathcal{P}_L d_i + \text{h.c.} + \dots$$

$$g_{Xd_id_j} = -\frac{3g^4\mathcal{A}}{(16\pi^2)^2} g_X \sum_{\alpha \in \{u,c,t\}} V_{\alpha i} V_{\alpha j}^* F\left(\frac{m_\alpha^2}{m_W^2}\right)$$
$$\simeq -\frac{3g^4\mathcal{A}}{(16\pi^2)^2} g_X V_{ti} V_{tj}^* F\left(\frac{m_t^2}{m_W^2}\right) + \dots,$$

where

$$F(x) \equiv \frac{x(1+x(\log x - 1))}{(1-x)^2} \simeq x \quad \text{(for } x \ll 1)$$

$$\mathcal{M}^{2-\mathrm{loop}}/\mathcal{M}^{1-\mathrm{loop}} \propto g^2/(16\pi^2) \times (m_t/m_X)^2$$

Resulting constraints on gauged baryon or lepton number

• No additional $X \rightarrow$ invisible channels.

gauged B number

gauged L number

- The baryonic(leptonic) force in this case is limited to be below weak interaction strength, $(g_X^2/m_X^2) < G_F$.
- Constraints are very strong, put in doubt some models for X17. ²⁴

Opportunities with 22 GeV beam?

- Search of FIPs in photoproduction. Real and quasi-real photons can produce scalars/pseudoscalars on a target, Z + γ → Z + a. Subsequent decay of a can be searched for. This benefits from energy.
- More exotic parity violation: in the 1980s at CERN parity violation in (Vector)_{muon} (Axial)_{quark} has been observed. The other combination (Axial)_{muon} (Vector)_{quark} has not been seen at low energies. Since the parity asymmetry grows with Q², (G_F Q²/α), one can try to see P-violation in muon pair production, ep→ ep + μ⁺ μ⁻. A detector with muon capabilities (Solid) would be required.
- Beam dump, fixed targets (HPS, BDX etc). Displaced decays benefit from higher energy.

Conclusions

- Dark Sectors / FIPs represent a well-motivated strategic direction in New Physics studies at the intensity frontier experiments.
- There is an elaborate theoretical and experimental effort to study "most reasonable" models of dark sector/FIPs, systematized in e.g. PBC working group.
- New physics opportunities at Jlab can be considered: search of new particles in the photoproduction; fixed target experiments, and beam dumps. Higher-energy polarized beam (22 GeV) may enable studies of parity violation in muon pair production.