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1.   Introduction and Motivation 



1.1  Why is it interesting to study  π0, η and η’physics? 

•  π0 is the pseudo-Goldstone boson of chiral perturbation theory 
•  It is one of the most fundamental degree of freedom  
•  There are still some puzzles about this particle:  
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Theory and Experiments
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Figure 15: Theoretical predictions and experimental results of the ⇡0 radiative decay width. Theory: LO (chiral anomaly) [15, 16, 311] (pink band);
sum rule/IO [87] (blue band); NNLO/KM [86] (yellow band); �PT NLO/AM [85] (light-green band); �PT NLO/GBH [84] (green band). Exper-
iments included in the current PDG [54]: CERN (direct) [317]; Cornell (Primako↵) [318]; CBAL (collider) [319]; PIBE (⇡+ decay) [320];
PrimEx-I [82]. New results: PrimEx-II and PrimEx-I and -II combined [83].

Two-photon decays of the ⌘ and ⌘0 can be similarly predicted in the chiral and large-Nc limits. However, the
situation becomes more complex once SU(3) breaking due to nonvanishing and di↵erent quark masses is taken into
account. The SU(3) breaking is primarily manifested by the ⌘mixing with the ⌘0, which needs to be tightly controlled
for a rigorous theoretical description of the matrix elements F⌘(0)��, following Sect. 3.2. They are given in terms of the
singlet and octet decay constants as well as mixing angles as
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Here, a 1/Nc-suppressed, Okubo–Zweig–Iizuka-(OZI-)rule-violating correction that amounts to a replacement F0 !
F0/(1 + ⇤3) [139] has been omitted; it is theoretically required to cancel the scale-dependence in the singlet decay
constant F0, but is assumed to be negligible in most phenomenological analyses of ⌘–⌘0 mixing [140–143]. In the
single-angle flavor-mixing scheme, Eq. (6.4) translates into

F⌘�� =
1

12⇡2

5 cos �
Fq

�
p

2 sin �
Fs

�

, F⌘0�� =
1

12⇡2

5 sin �
Fq

+

p
2 cos �
Fs

�

. (6.5)

The partial widths �(⌘(0) ! ��) are a prime source for experimental information on the decay constants and mixing
angles, and therefore of high theoretical interest.

6.1.2. Experimental activities for ⇡0, ⌘, ⌘0 ! ��
With the measurement of ⇡0 ! �� being an important precision test of low-energy QCD, its current theoretical

and experimental status is presented in Fig. 15. The chiral anomaly prediction in Eq. (6.3) gives �(⇡0 ! ��) =
7.750(16) eV (horizontal pink band). Its width corresponds to its uncertainty, due to the experimental uncertainty
from the pion decay constant, F⇡ = 92.277(95) MeV [54], extracted from the charged-pion decay. Since the ⇡0 is the
lightest hadron, higher-order corrections to the anomaly prediction due to nonvanishing quark masses are small and
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1.1  Why is it interesting to study η and η’physics? 

•  Quantum numbers IG JPC = 0+ 0−+ 

–  C, P eigenstates, all additive quantum numbers are zero  
–  flavour-conserving laboratory for symmetry tests  

  
•  η: pseudo-Goldstone boson,                         

 
All decay modes forbidden at leading order by symmetries (C, P, 
angular momentum, isospin/G-parity. . . ) 

 
•  η’: not a Goldstone boson due to U(1)A anomaly 
 
 
 
 

•  Theoretical methods: 
–   (large-Nc) chiral perturbation theory, RChPT 
–  dispersion relations to resum final state interactions 
–  Vector-meson dominance  
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  Mη = 547.862(17) MeV , Γη = 1.31 keV 

  Mη ' = 957.78(6) MeV
Γη’ = 196 keV 



1.1  Why is it interesting to study π0, η and η’physics? 

•  In the study of π0, η and η’physics, large amount of data have been collected: 
 

 CBall, WASA, KLOE & KLOEII, BESIII, A2@MAMI, CLAS, GlueX 
 
 

 More to come: JEF, REDTOP (Elam et al’22), LHCb? 
 22 GeV JLab upgrade: very high precision could be achieved :  
 radiative decay width and the transition form factor of  
 π0 (at 0.95% precision), η(2%) and η’(3.4%) via Primakoff effect. 

 
 
 

•  Unique opportunity:  
–  Test chiral dynamics at low energy 
–  Extract fundamental parameters of the Standard Model:  

ex: light quark masses 
–  Study of fundamental symmetries: P & CP and C & CP violation 
–  Looking for beyond Standard Model Physics         Dark Sector 

  See talk by M. Pospelov  
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1.3  Study of η and  η’ physics  
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PDG’18 
Gan, Kubis, E.P., Tulin  

in progress 

  Mη = 547.862(17) MeV

Rich physics program 
at h,h’ factories

Standard Model highlights
• Theory input for light-by-light 

scattering for (g-2)m
• Extraction of light quark masses
• QCD scalar dynamics 

Fundamental symmetry tests
• P,CP violation
• C,CP violation

[Kobzarev & Okun (1964), Prentki & 
Veltman (1965), Lee (1965), Lee & 
Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)
• Vector bosons
• Scalars
• Pseudoscalars (ALPs)

(Plus other channels that have 
not been searched for to date) Gan, Kubis, Passemar, ST

[arxiv:2007.00664]

From  S.Tulin 

Gan, Kubis, E. P., 
Tulin’22 
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2.  η → 3π : light quark mass extraction 

In collaboration with G. Colangelo, S. Lanz  
          and H. Leutwyler (ITP-Bern) 

 

   Phys. Rev. Lett. 118 (2017) no.2, 022001 
  Eur.Phys.J. C78 (2018) no.11, 947 



2.1   Decays of η 

•  η  decay from PDG:  
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Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

η IG (JPC ) = 0+(0 − +)

We have omitted some results that have been superseded by later
experiments. The omitted results may be found in our 1988 edition
Physics Letters B204B204B204B204 (1988).

η MASSη MASSη MASSη MASS

Recent measurements resolve the obvious inconsistency in previous η mass
measurements in favor of the higher value first reported by NA48 (LAI 02).
We use only precise measurements consistent with this higher mass value
for our η mass average.

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE

547.865±0.031±0.062 NIKOLAEV 14 CRYB γp → pη

547.873±0.005±0.027 1M GOSLAWSKI 12 SPEC d p → 3He η

547.874±0.007±0.029 AMBROSINO 07B KLOE e+ e− → φ → ηγ
547.785±0.017±0.057 16k MILLER 07 CLEO ψ(2S) → J/ψη

547.843±0.030±0.041 1134 LAI 02 NA48 η → 3π0

• • • We do not use the following data for averages, fits, limits, etc. • • •

547.311±0.028±0.032 1 ABDEL-BARY 05 SPEC d p → 3He η
547.12 ±0.06 ±0.25 KRUSCHE 95D SPEC γp → ηp, threshold

547.30 ±0.15 PLOUIN 92 SPEC d p → 3He η

547.45 ±0.25 DUANE 74 SPEC π− p → n neutrals
548.2 ±0.65 FOSTER 65C HBC
549.0 ±0.7 148 FOELSCHE 64 HBC
548.0 ±1.0 91 ALFF-... 62 HBC
549.0 ±1.2 53 BASTIEN 62 HBC

1ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better
precision. See comment in the header.

η WIDTHη WIDTHη WIDTHη WIDTH

This is the partial decay rate Γ(η → γγ) divided by the fitted branching
fraction for that mode. See the note at the start of the Γ(2γ) data block,
next below.

VALUE (keV) DOCUMENT ID

1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT

η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES

Scale factor/
Mode Fraction (Γi /Γ) Confidence level

Neutral modesNeutral modesNeutral modesNeutral modes
Γ1 neutral modes (72.12±0.34) % S=1.2

Γ2 2γ (39.41±0.20) % S=1.1

Γ3 3π0 (32.68±0.23) % S=1.1

HTTP://PDG.LBL.GOV Page 1 Created: 10/1/2016 20:06

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Γ4 π02γ ( 2.56±0.22) × 10−4

Γ5 2π02γ < 1.2 × 10−3 CL=90%

Γ6 4γ < 2.8 × 10−4 CL=90%

Γ7 invisible < 1.0 × 10−4 CL=90%

Charged modesCharged modesCharged modesCharged modes
Γ8 charged modes (28.10±0.34) % S=1.2

Γ9 π+π−π0 (22.92±0.28) % S=1.2

Γ10 π+π−γ ( 4.22±0.08) % S=1.1

Γ11 e+ e−γ ( 6.9 ±0.4 ) × 10−3 S=1.3

Γ12 µ+µ−γ ( 3.1 ±0.4 ) × 10−4

Γ13 e+ e− < 2.3 × 10−6 CL=90%

Γ14 µ+µ− ( 5.8 ±0.8 ) × 10−6

Γ15 2e+ 2e− ( 2.40±0.22) × 10−5

Γ16 π+π− e+ e− (γ) ( 2.68±0.11) × 10−4

Γ17 e+ e−µ+µ− < 1.6 × 10−4 CL=90%

Γ18 2µ+ 2µ− < 3.6 × 10−4 CL=90%

Γ19 µ+µ−π+π− < 3.6 × 10−4 CL=90%

Γ20 π+ e− νe + c.c. < 1.7 × 10−4 CL=90%

Γ21 π+π−2γ < 2.1 × 10−3

Γ22 π+π−π0γ < 5 × 10−4 CL=90%

Γ23 π0µ+µ−γ < 3 × 10−6 CL=90%

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Charge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), or

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

Γ24 π0γ C < 9 × 10−5 CL=90%

Γ25 π+π− P,CP < 1.3 × 10−5 CL=90%

Γ26 2π0 P,CP < 3.5 × 10−4 CL=90%

Γ27 2π0γ C < 5 × 10−4 CL=90%

Γ28 3π0γ C < 6 × 10−5 CL=90%

Γ29 3γ C < 1.6 × 10−5 CL=90%

Γ30 4π0 P,CP < 6.9 × 10−7 CL=90%

Γ31 π0 e+ e− C [a] < 4 × 10−5 CL=90%

Γ32 π0µ+µ− C [a] < 5 × 10−6 CL=90%

Γ33 µ+ e− + µ− e+ LF < 6 × 10−6 CL=90%

[a] C parity forbids this to occur as a single-photon process.

HTTP://PDG.LBL.GOV Page 2 Created: 10/1/2016 20:06
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2.1   Why is it interesting to study η → 3π?  

•  Decay forbidden by isospin symmetry  η(IG = 0+)→ 3π(IG = 1-) 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 
 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

              Unique access to (mu− md) 
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2.2   Quark mass ratio 

•  In the following, extraction of Q  from η → π+ π- π0  

 
 
 
 
 

•  Aim: Compute M(s,t,u) with the best accuracy 
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Determined from experiment 
 

Determined from: 
•  Dispersive calculation 
•  ChPT  
 

Fit to  
Dalitz distr. 
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2.3  Method

•  Decompose amplitide in partial waves: 
 
 
 
 
•  Usual assumption: 3 BWs (ρ+, ρ−, ρ0) + background term 

�
�
�

•  Use a Khuri-Treiman approach or dispersive approach 
Restore 3 body unitarity and take into account the final state 
interactions in a systematic way 
 
 

•   
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Improve to include final  
states interactions 
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+ restore unitarity 
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2.7  Method

•  S-channel partial wave decomposition  
 
 
 
 

 
•  One truncates the partial wave expansion :         Isobar approximation 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

•   Use a Khuri-Treiman approach or dispersive approach 
        Restore 3 body unitarity and take into account the final state interactions     

             in a systematic way 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves        exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

   
 

 

 
 

      

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 

Emilie Passemar 14 

2.3  Representation of the amplitude 



•  Decomposition of the amplitude as a function of isospin states  

 
 

 
 

•  Unitarity relation:  

 

 
 

      

 
 

  
M (s, t,u) = M0

0(s) + s − u( )M1
1(t) + s − t( )M1

1(u) + M0
2(t) + M0

2(u) − 2
3

M0
2(s)
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2.3  Representation of the amplitude 

12

Discontinuity relations

Consider(J=1(only

π

ππ

π

π
V

DiscF (s) = t⇤(s) ⇢(s)F (s)

⇡⇡ ! ⇡⇡
0.4 0.6 0.8 1.0 1.2

0

50

100

150

200

Energy

d 1
,1
,p
p-
>
pp

Roy analysis 2011  
R. Garcia-Martin at.al. 

inp
ut

12

Discontinuity relations
Consider(J=1(only

π

π
π

π

π

V DiscF (s) = t⇤(s) ⇢(s)F (s)

⇡⇡ ! ⇡⇡

0.4 0.6 0.8 1.0 1.2

0

50

100

150

200

Energy

d 1
,1
, p
p-
>
pp

Roy analysis 2011  R. Garcia-Martin at.al. 

inpu
t

Roy analysis  
Colangelo et al.’01 

   
disc Mℓ

I (s)⎡⎣ ⎤⎦ = ρ(s)tℓ
*(s) Mℓ

I (s) + M̂ℓ
I (s)( )

right-hand cut  left-hand cut  

From unitarity to integral equation

Unitarity relation for F(s):
discF(s) = 2i
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right-hand cut

+ F̂(s)
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× θ(s− 4M2
π)× sin δ11(s) e
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• inhomogeneities F̂(s): angular averages over the F(s)
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Khuri, Treiman 1960
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B. Kubis, Precision tools in hadron physics for Dalitz plot studies – p. 12
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2.4  ω/φ  → 3π	

•  Simple system: restricted to odd partial waves  
        P wave interactions only (neglecting F- and higher)  

•  Amplitude: 

 
 
 

•  F(s) function of one variable with only a right-hand cut 
 

•  Unitarity relation: 

•  Relation of dispersion to reconstruct the amplitude everywhere: 
 
 
 
 
 
 
 
 
 

ω(s): conformal map of inelastic contributions: 
        Coefficients ai play the role of improved  
        subtraction constants in alternative approaches:  
        e.g, Niecknig, Kubis, Schneider‘12 

•    
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•  Decomposition of the amplitude as a function of isospin states  

 
 
 

•  Unitarity relation:  

 
 
 

•  Relation of dispersion to reconstruct the amplitude everywhere: 

•  PI(s) determined from a fit to NLO ChPT + experimental Dalitz plot 
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2.3  Representation of the amplitude 
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2.4  η → 3π  Dalitz plot 

•  In the charged channel: experimental data from WASA, KLOE, BESIII 

•  New data expected from CLAS and GlueX with very different systematics 
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-
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FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).

Entries  371
Mean   0.01405
RMS    0.9723
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FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.

KLOE’16 

  
A(s, t,u)

2
= N

1 + aY + bY 2

+dX 2 + fY 3 + ...
⎛
⎝⎜

⎞
⎠⎟

X = 3
T+ −T−

Qc
= 3
2MηQc

u − t( )

  
Y =

3T0

Qc

−1 = 3
2MηQc

Mη − M
π 0( )2

− s⎛
⎝

⎞
⎠ −1



•  The amplitude along the line s = u :  

 

2.5  Results: Amplitude for η→ π+ π- π0 decays  
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•  The amplitude along the line t = u :  

 

2.5  Results: Amplitude for η→ π+ π- π0 decays  
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Shift of Q towards  
smaller values  
Better agreement with  
 η → 3π result  

Quark mass ratio 

20 

  Q = 22.1 ± 0.7

•  Experimental systematics needs to be taken into account 

20 21 22 23 24

Q

χPT O(p4) (Gasser, Leutwyler’85)

η → 3π

χPT O(p6) (Bijnens, Ghorbani’07)

dispersive (Anisovich et al.’96)

dispersive (Kambor et al.’96)

dispersive (Kampf et al.’11)

dispersive (Albaladejo et al.’17)

dispersive (Guo et al., JPAC’15’17)

dispersive (Colangelo et al.’18)

Weinberg’77

kaon mass splitting

Kastner, Neufeld’08

Nf = 2

lattice, FLAG’21

Nf = 2 + 1

Nf = 2 + 1 + 1

New lattice results 



 
 
 
 
 
 

•  Smaller values for Q        smaller values for ms/md and mu/md than LO ChPT  
  

 

Light quark masses 

21 

  Q = 22.1 ± 0.7
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2.6  Prospects 
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•  Uncertainties in the quark mass ratio 

 
 
 
 
           

 

 
 
 

 

Can be investigated and reduced at  
future facilities  
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Figure 17: Experimental status of �(⌘ ! ��). The five points on the left are the results from collider experiments [319, 328–331], point 6
represents the Cornell Primako↵ measurement [332]. Point 7 is the projected error for the PrimEx-eta measurement with a ⇠ 3% total error,
arbitrarily plotted to agree with the average value of previous measurements. Figure reprinted from Ref. [89].

to separate the Primako↵ process from hadronic backgrounds, as demonstrated in the earlier Primako↵ experiment
by the Cornell group [332]. Two experimental techniques will be applied in the PrimEx-eta experiment to ameliorate
this problem. One is to go to higher photon energies, which, in addition to increasing the Primako↵ cross section
[�P ⇠ Z2 log(E)], will help better separating di↵erent processes by pushing the Primako↵ peak to smaller angles
[✓P ⇠ M2

⌘/(2E2)] as compared to the nuclear coherent production peaked at ✓NC ⇠ 2/(ER) [334], where R is the nuclear
radius (R ⇠ A1/3/M⇡). As such, a higher-energy beam in the JLab 12 GeV era is vital for this measurement. The
second is to use lighter targets, 1H and 4He, which are more compact compared to heavier nuclei, thereby enhancing
coherency as well as o↵ering less distortion to the physics signals due to the initial- and final-state interactions in
the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first data set in spring 2019 on a liquid 4He target and data analysis is in
progress. More data will be expected from the second run in fall 2021.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18, a
new Primako↵ result from the PrimEx-eta experiment will make an impact on Q by resolving the systematic di↵erence
between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [56]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.

41
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2.7  Expected Impact of JLab 22 GeV program 
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Figure 18: Light quark mass ratio determined by two di↵erent methods. The left-hand side indicates the values of Q calculated from the ⌘ ! 3⇡
decay corresponding to the Primako↵ [332] and collider average [54] experimental results for �(⌘! ��) as input, as well as the PDG averages for
B(⌘ ! ⇡+⇡�⇡0) and B(⌘ ! ��), see Table 1. The right-hand side shows the results for Q obtained from the kaon mass di↵erence, see Eq. (5.24),
with theoretical estimates for the electromagnetic corrections based on Dashen’s theorem (5.8), Ref. [252] (KN), or the lattice [259]. Figure adapted
from [203].

the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first two data sets in spring 2019 and in fall 2021 on a liquid 4He target.
More data will be expected from the third run in 2022.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18,
a new Primako↵ result from the PrimEx-eta experiment (the red point) will make an impact on Q by resolving the
systematic di↵erence between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [54]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.

6.2. ⇡0, ⌘, ⌘0 transition form factors
The general two-photon couplings for the lightest flavor-neutral pseudoscalar mesons P = ⇡0, ⌘, ⌘0 are described

by FP�⇤�⇤ (q2
1, q

2
2), defined in Eq. (6.1). Di↵erent experimental techniques can be used to access these TFFs in various

kinematical regions, including both time-like and space-like momenta, which are related to one another by analytic
continuation. In the space-like case, it is customary to express the photon momenta in terms of the positive variables
Q2

1,2 = �q2
1,2 > 0.

The general (doubly-virtual) TFFs are challenging both to predict theoretically and measure experimentally. Con-
sequently, most attention has focused on the singly-virtual TFF FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) involving one real and one
virtual photon. Although we present more sophisticated treatments below, the approximate behavior of this function
can be understood simply within the context of VMD, which predicts a parameterization of the form

FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) =
FP��

1 � q2/⇤2
P
, (6.8)
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3.   Theory Inputs for hadronic light-
by-light for g-2 of the muon 
 



3.1  Introduction 

 
•  The gyromagnetic factor of the muon is modified by loop contribution 
 
•  Predicted by Dirac to be 2 

•  Schwinger computed the first order   correction 
 
�
�
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•  In lowest order, where mass effects appear, contributions 

from heavy virtual particles scale as m2
e /µ  :  

 aµ should be roughly 50 times more sensitive to NP than ae ! 

γ 

µ ? •  Loose about a factor of 800 in experimental precision 

The experimental precision for aµ will be worse than for ae, so why do it ? 

aτ even more sensitive, but insufficient experimental accuracy Emilie Passemar 25 
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“Light-by-light 
scattering” 

… or no effect on aµ, 
but new physics at the 
LHC? That would be 
interesting as well !! 

Anomalous magnetic moment of elementary fermions 

ae = 1159652180.73(28) × 10−12 (0.24 × 10−9)
PRL 100, 120801 (2008)

QED test or αem determination

aμ = 116592091(63) × 10−11 (0.54 × 10−6)
E821, PRD 73, 072003 (2006)

Sensitive test of the Standard Model

aτ = −0.018(17) or − 0.052 < aτ < 0.013 95%CL
(DELPHI), EPJC 35, 159 (2004)

Theory: 117721(5) × 10−8, Eidelman, Passera, MPL A 22, 159 (2007)

aμ much more sensitive to NP than ae ∼ (mμ/me)2 ≈ 4.3 · 104

Single non trivial parameter coming from loops in QFT

QED:



3.1  Introduction 

 
•  The gyromagnetic factor of the muon is modified by loop contribution 
 
•  We can also study ae with better experimental precision  

but if new physics heavy then more sensitivity in aµ �
�
�
�
�
�
�
�
aτ    even more sensitive but insufficient experimental  
accuracy 
 

•  But  ae  important if NP is light  
          Important constraints on NP scenarios  
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•  In lowest order, where mass effects appear, contributions 

from heavy virtual particles scale as m2
e /µ  :  

 aµ should be roughly 50 times more sensitive to NP than ae ! 

γ 

µ ? •  Loose about a factor of 800 in experimental precision 

The experimental precision for aµ will be worse than for ae, so why do it ? 

aτ even more sensitive, but insufficient experimental accuracy 

Giudice, Paradisi, Passera’12 

Eidelman, Giacomini, Ignatov, Passera’07 
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3.2  Experimental result 
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aµ(SM) = 0.00116591810(43) à 368 ppb

• Individual tension 
with SM
– BNL: 3.7s
– FNAL: 3.3s

aµ(Exp) - aµ(SM) = 0.00000000251(59) à 4.2s

à 3.7s

à 3.3s

FNAL g-2  
Chris Polly 



3.3  Contribution to (g-2)µ
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Loop contributions: 
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“Light-by-light 
scattering” 

… or no effect on aµ, 
but new physics at the 
LHC? That would be 
interesting as well !! 

Need to compute the SM prediction with high precision!           Not so easy!  

Emilie Passemar 28 

Hoecker’11 



3.4  Confronting measurement and prediction 

QCD!Sector:!Muon!magne8c!moment!gµA2!!

George!Lafferty!!!!!!!!!!!!!!!!!!!!!!!

University!of!Manchester!

13th!Interna8onal!Workshop!on!Tau!

Lepton!Physics! 23!

…!or!…!

Let’s!agree!on!“about!3¾”!

Uncertainty!dominated!by!hadronic!vacuum!

polariza8on!and!lightAbyAlight!scarering,!both!of!

which!need!experimental!input!from!tau!and!e+eA!

Conserved!vector!current!(CVC)!relates!lowA

energy!e+eA!scarering!to!hadronic!¿!decays!
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Hadronic*Contribu2on*

µ 
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γ 
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a
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had 

γ 
  

aµ
had,LO =

α2

3π 2
ds

m
π0
2

∞

∫    K(s)
s

   R(s)

  

12π Im∏γ (s) = σ
(0)[e+e− →hadrons]
σ (0)[e+e− → µ+µ− ]

≡R(s)

 Im[                   ] ∝ |                 had |2 

•  Cannot be computed from first principles due to low-energy hadronic effects 

•  Fortunately, one can benefit from analyticity and unitarity to obtain real part of photon 
polarisation function from dispersion relation over total hadronic cross section data 

•  Theoretical Prediction:  
 
 
 
 
 
 
 
 
 
 
 
 
•  Important contribution comes from  

virtual hadrons in the loop!  

•  Tackled using : 
-  Models 
-  Dispersion Relations 
-  Lattice QCD 
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Loop contributions: 
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Loop contributions: 
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Loop contributions: 
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Loop contributions: 
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Loop contributions: 
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Prospects for precise predictions of aµ in the SM
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

While several lattice collaborations have results for HVP, the LbL lattice 
calculations are much more challenging  
           the data driven dispersive approach dominates   

Colangelo et al. 
Snowmass 2022 
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•  Reconstruction of γ∗γ∗ → ππ, π0: combine experiment and theory 
constraints 

•  Need input on γ∗γ∗ matrix elements for as many states as possible 

3.6  Contribution of π0,  η  and  η’physics 
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Figure 57: The pseudoscalar-pole contribution: the dashed lines stand for the pseudoscalar meson, while the blobs can be unambiguously related
to the TFFs. Reprinted from Ref. [19].

implying potentially large uncertainties. As a result, it was necessary to use more phenomenological descriptions for
the pseudoscalar TFFs, based on vector-meson-dominance (VMD) ideas and guided by the few existing experimental
data [488, 501]. Later, building on large-Nc ideas and new data, the inclusion of additional resonances allowed the
authors to satisfy (certain) known low- and high-energy QCD constraints and to better fit and interpolate the data [473].
We do not discuss the nonpole (“⇡0-exchange”) contributions or even variants in which one vertex contains a constant
form factor [18, 476, 596] for the reasons outlined in Sec. 4.2.3.

With the advent of the new generation of (g�2)µ experiments, systematic uncertainties of such approaches (related
to the finite number of resonances and the large-Nc limit), previously irrelevant, must be improved upon far beyond
the typical 30% estimates. Consequently, the phenomenological determinations must be model-independent and data-
driven to as large an extent as possible, making use of all experimental data on the corresponding TFFs in order
to achieve a new standard of precision, and also to provide a competitive cross-check on the lattice calculation in
Sec. 5.5. In the following, we review what we believe are the most up-to-date evaluations of the pseudoscalar-pole
contributions in the literature, with a special emphasis on the ⇡0. In particular, we demand that three criteria be met:

1. in addition to the TFF normalization given by the real-photon decay widths, also high-energy constraints must
be fulfilled;

2. at least the spacelike experimental data for the singly-virtual TFF must be reproduced;

3. systematic uncertainties must be assessed with a reasonable procedure.

We distinguish two di↵erent strategies fulfilling these criteria: the dispersive one, which could in principle reconstruct
the TFF from completely unrelated data based on analyticity constraints; and the one based in the mathematical
framework of Padé approximants along with experimental data in the spacelike (and low-energy timelike) region. As
both are based on very di↵erent approaches, the numerical agreement that is found between the two, and also with
the lattice determination in Sec. 5.5, gives us further confidence in the reliability of the ⇡0-pole contribution thus
determined. In addition, we also comment on recent progress in other approaches. Finally, we summarize the status
of the ⌘ and ⌘0 contributions.

4.4.1. Definitions, asymptotic constraints
The pseudoscalar-pole contributions are given according to

aP-pole
µ =

✓↵

⇡

◆3 Z

dQ1dQ2d⌧
h

w1(Q1,Q2, ⌧)FP�⇤�⇤ (�Q2
1,�Q2

3)FP�⇤�⇤ (�Q2
2, 0)

+ w2(Q1,Q2, ⌧)FP�⇤�⇤ (�Q2
1,�Q2

2)FP�⇤�⇤ (�Q2
3, 0)
i

, (4.19)

where Q2
3 ⌘ Q2

1 + Q2
2 + 2⌧Q1Q2. The explicit form of the weight functions w1/2(Q1,Q2, ⌧) can be found in the

literature [19, 21, 476, 555]. A numerical evaluation of w1(Q1,Q2, 0) is shown in Fig. 58: their most important
property is the fact that they are peaked at low energies, for the ⇡0 in the range Qi < 1 GeV. The TFF appearing above
is defined as

i
Z

d4x eiq1 · xh0|T { jµ(x) j⌫(0)}|P(q1 + q2)i = ✏µ⌫⇢�q⇢1q�2 FP�⇤�⇤ (q2
1, q

2
2) , (4.20)
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3.6  Contribution of π0,  η  and  η’physics 



•  Experimentally, measuring the doubly-virtual TFFs  FPγ∗γ∗ is very challenging. 

•  In time-like region (q2
1,2 > 0), the TFF can be measured in principle through 

the double-Dalitz decay, P → e+e−e+e− but very difficult because of small 
partial width          only upper limits for π0 and η  

•  Other possibility: use vector meson decays V → Pl+l− : Recent results  
–  ω → π0µ+µ− from NA60 and ω → π0e+e− from A2 

–  φ → π0e+e− from KLOE-II 
–  J/ψ → Pe+e− (P = π0, η, η′) from BESIII 
–  η′ → ωe+e− only BR reported by BESIII 
–  e+e− → ωπ0 from various collaborations   
–  e+e− → φη′ and e+e− → J/ψ η’  from BESIII 

•  In space-like region (q2
1,2 = -Q2

1,2< 0), two-photon fusion e+e− → γ∗γ∗e+e− → 
Pe+e−, where the virtualities of the photons are measured by detecting the 
outgoing leptons. In double tag        double virtual TFF but cross sections are 
very small, only one result from BaBar in η′ . 
Possibility via virtual Primakoff effect, e−A → γ∗γ∗e−A → Pe−A         

      under investigation at JLab  
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•  Many more results from single-virtual TFFs  FPγγ∗: 

•  In time-like region:  

–  π0 → l+l−γ from NA62 and A2 experiments 
–  η → µ+ µ− γ from NA60 
–  η → e+ e− γ from A2 at MAMI and WASA-at-COSY  
–  η' → e+ e− γ from BESIII 
–  for larger momenta: e+e− → γ∗ → Pγ at collider facilities: SND and CMD2  

at Novosibirsk VEPP-2000, BaBar and CLEO 

•  In space-like region: e+e− → γ∗γ∗e+e− → Pe+e− at the e+e− collider facilities. Only 
one outgoing lepton is detected (single-tag mode). The other untagged photon 
is almost real (where the associated lepton is not detected).  
Measurements by CLEO, CELLO, BaBar and Belle.  
Low Q2 region data are missing           on-going activities at BESIII and KLOE-II 
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3.6  Contribution of π0,  η  and  η’physics 



 

•  Weight contribution               low energy dominates  
 
 
 
Use experimental data with dispersive analysis to reconstruct from 
dominant low-energy singularities (2/3 pions intermediate states) 

 

 
 

 

 
 
 
               

Emilie Passemar 39 

g-2 Theory Initiative 
White Paper  

Figure 58: Weight function w1(Q1,Q2, 0) for ⇡0 (left) and ⌘0 (right); cf. Eq. (4.19). Reprinted from Ref. [19].

where jµ(x) = q̄(x)Q�µq(x), with Q = diag(2,�1,�1)/3, and ✏0123 = +1. For real photons and in the chiral limit
mu,d,s ! 0 (supplemented by the large-Nc limit for the ⌘0, so that the latter remains massless), it is related to the
anomaly [521, 522, 597],
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where a = 0, . . . , 8 is the corresponding flavor index associated to the Gell-Mann matrices �a, extended to include
�0 ⌘

p
2/3 diag(1, 1, 1), and h0| ja5µ|Pi ⌘ ipµFa

P with ja5µ = q̄�µ�5
�a

2 q. Away from the chiral limit, corrections arise
and ⌘–⌘0 mixing must be accounted for, see Refs. [598, 599] and references therein. The high-energy behavior can be
obtained by expanding the product of electromagnetic currents on the light-cone, obtaining at leading order in pQCD
and at leading-twist [600, 601]
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Higher-order corrections in pQCD have been derived as well [602, 603]. Since for large momenta �a
P(x) ! 6x(1 �

x) [601, 604], the following limits can be inferred
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where we include �0 ⌘ 11Nc/3 � 2Nf /3, with Nf the number of e↵ective active flavors. The first limit is commonly
known as the Brodsky–Lepage (BL) limit [600, 601], while the latter can be rigorously obtained from the operator
product expansion (OPE) [605–608]. The ⌘ and ⌘0 cases receive important ↵s corrections due to the anomalous
dimension of the singlet axial current [609], which have been accounted for by the last factor [599, 610, 611]. Finally,
higher-order corrections have been calculated using the OPE, which, for the ⇡0, multiply Eq. (4.24) by (1 � 8

9
�2

Q2 ),
with the estimate �2 = 0.20(2) GeV2 determined from sum rules [606] already used in Refs. [18, 476, 596] and also
supported by lattice results [22, 612].

4.4.2. The pion pole in a dispersive approach
The central idea behind the dispersive analysis of the ⇡0 TFF [21, 497, 613] is to reconstruct this object from

its dominant low-energy singularities. As Fig. 58 (left) demonstrates, the main weight for the HLbL integration
in Eq. (4.19) lies in the region of Qi < 1 GeV; in this range, where a precise and reliable theoretical description is
therefore of prime importance, the intermediate states dominating the discontinuities in the two form factor virtualities
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are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis
of a pion distribution amplitude. Altogether, the TFF is therefore written as [21, 497]

F⇡0�⇤�⇤ = Fdisp
⇡0�⇤�⇤

+ Fe↵
⇡0�⇤�⇤ + Fasym

⇡0�⇤�⇤
. (4.25)

For the dispersive part, it is useful to decompose the TFF according to the photons’ isovector (v) and isoscalar (s)
components as
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This function obeys a double-spectral representation
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where q⇡(s) =
p

s/4 � M2
⇡, FV

⇡ (s) is the electromagnetic form factor of the pion, and f1(s, q2) the partial-wave ampli-
tude for �⇤(q)⇡! ⇡⇡. The onset of the isoscalar discontinuity is sthr = 9M2

⇡ in the absence of electromagnetic e↵ects,
while taking into account the significant decay ! ! ⇡0� lowers it to M2

⇡0 . siv/is represent isovector and isoscalar cut-
o↵s. FV

⇡ (s) is described in terms of an Omnès representation [251] based on a variety of inputs for the ⇡⇡ P-wave phase
shift and fit to data on ⌧� ! ⇡�⇡0⌫⌧ [185]. The amplitude f1(s, q2) is constructed based on solutions of Khuri–Treiman
equations [261], with a normalization function a(q2) that needs to be adjusted to e+e� ! 3⇡ data. At the real-photon
point, f1(s, q2 = 0) can be tested experimentally in the reaction �⇡ ! ⇡⇡ [614, 615], while Dalitz plot distributions
on !! 3⇡ [586, 587] and �! 3⇡ [52, 585] probe it on the narrow isoscalar vector resonances [588]. For general q2,
a representation of a(q2) with good analytic properties [21] is fit to e+e� ! 3⇡ cross section data by SND [42, 616]
and BABAR [44] up to q2 = (1.8 GeV)2. In particular, a single-variable dispersion relation yields a prediction for the
timelike singly-virtual ⇡0 TFF [21, 613, 617] that is in very good agreement with precise data [76, 537, 618, 619]:
with its correct analytic properties, the dispersive TFF representation links the timelike and the spacelike form factor
seamlessly, such that timelike data helps constrain the spacelike low-energy region where data is still relatively scarce.
Even more importantly, the dispersive formulation as in Eq. (4.27) fixes the doubly-virtual TFF, for which no data at
all is available as yet, from singly-virtual input.

To account for the asymptotic behavior of the TFF in doubly-virtual kinematics, we realize that Eq. (4.22) can be
written in a double-spectral form akin to Eq. (4.27), with a formal asymptotic double-spectral function

⇢asym(x, y) = �2⇡2F⇡xy�00(x � y) , (4.28)

where �00(.) denotes the second derivative of a delta function. Inserting Eq. (4.28) into the double-spectral representa-
tion Eq. (4.27) and integrating over all x and y reproduces the pQCD form of Eq. (4.22) for the asymptotic distribution
amplitude. Restraining however the support for this contribution to energies above a lower matching point sm, the
asymptotic TFF contribution becomes

Fasym
⇡0�⇤�⇤

(q2
1, q

2
2) = 2F⇡

Z 1

sm

dx
q2

1q2
2

(x � q2
1)2(x � q2

2)2
, (4.29)

which does not contribute for singly-virtual kinematics, but ensures the asymptotic behavior Eq. (4.22) otherwise.
Finally, the addition of an e↵ective pole
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are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis
of a pion distribution amplitude. Altogether, the TFF is therefore written as [21, 497]
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For the dispersive part, it is useful to decompose the TFF according to the photons’ isovector (v) and isoscalar (s)
components as
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This function obeys a double-spectral representation

Fdisp
vs (�Q2

1,�Q2
2) =

1
⇡2

Z siv

4M2
⇡

dx
Z sis

sthr

dy ⇢(x, y)
�

x + Q2
1
��

y + Q2
2
�

,

⇢(x, y) =
q3
⇡(x)

12⇡
p

x
Im
h

�

FV
⇡ (x)
�⇤ f1(x, y)

i

, (4.27)

where q⇡(s) =
p

s/4 � M2
⇡, FV

⇡ (s) is the electromagnetic form factor of the pion, and f1(s, q2) the partial-wave ampli-
tude for �⇤(q)⇡! ⇡⇡. The onset of the isoscalar discontinuity is sthr = 9M2

⇡ in the absence of electromagnetic e↵ects,
while taking into account the significant decay ! ! ⇡0� lowers it to M2

⇡0 . siv/is represent isovector and isoscalar cut-
o↵s. FV

⇡ (s) is described in terms of an Omnès representation [251] based on a variety of inputs for the ⇡⇡ P-wave phase
shift and fit to data on ⌧� ! ⇡�⇡0⌫⌧ [185]. The amplitude f1(s, q2) is constructed based on solutions of Khuri–Treiman
equations [261], with a normalization function a(q2) that needs to be adjusted to e+e� ! 3⇡ data. At the real-photon
point, f1(s, q2 = 0) can be tested experimentally in the reaction �⇡ ! ⇡⇡ [614, 615], while Dalitz plot distributions
on !! 3⇡ [586, 587] and �! 3⇡ [52, 585] probe it on the narrow isoscalar vector resonances [588]. For general q2,
a representation of a(q2) with good analytic properties [21] is fit to e+e� ! 3⇡ cross section data by SND [42, 616]
and BABAR [44] up to q2 = (1.8 GeV)2. In particular, a single-variable dispersion relation yields a prediction for the
timelike singly-virtual ⇡0 TFF [21, 613, 617] that is in very good agreement with precise data [76, 537, 618, 619]:
with its correct analytic properties, the dispersive TFF representation links the timelike and the spacelike form factor
seamlessly, such that timelike data helps constrain the spacelike low-energy region where data is still relatively scarce.
Even more importantly, the dispersive formulation as in Eq. (4.27) fixes the doubly-virtual TFF, for which no data at
all is available as yet, from singly-virtual input.

To account for the asymptotic behavior of the TFF in doubly-virtual kinematics, we realize that Eq. (4.22) can be
written in a double-spectral form akin to Eq. (4.27), with a formal asymptotic double-spectral function

⇢asym(x, y) = �2⇡2F⇡xy�00(x � y) , (4.28)

where �00(.) denotes the second derivative of a delta function. Inserting Eq. (4.28) into the double-spectral representa-
tion Eq. (4.27) and integrating over all x and y reproduces the pQCD form of Eq. (4.22) for the asymptotic distribution
amplitude. Restraining however the support for this contribution to energies above a lower matching point sm, the
asymptotic TFF contribution becomes
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which does not contribute for singly-virtual kinematics, but ensures the asymptotic behavior Eq. (4.22) otherwise.
Finally, the addition of an e↵ective pole

Fe↵
⇡0�⇤�⇤ (q

2
1, q

2
2) =

ge↵

4⇡2F⇡

M4
e↵

(M2
e↵ � q2

1)(M2
e↵ � q2

2)
(4.30)

111

3.6  Contribution of π0,  η  and  η’physics 



Emilie Passemar 40 

issue experimental input [I] or cross-checks [C]

axials, tensors, higher pseudoscalars �(⇤)�⇤ ! 3⇡, 4⇡, KK̄⇡, ⌘⇡⇡, ⌘0⇡⇡ [I]
missing states inclusive �(⇤)�⇤ ! hadrons at 1–3 GeV [I]
dispersive analysis of ⌘(0) TFFs e+e� ! ⌘⇡+⇡� [I]

⌘0 ! ⇡+⇡�⇡+⇡� [I]
⌘0 ! ⇡+⇡�e+e� [I]
�⇡� ! ⇡�⌘ [C]

dispersive analysis of ⇡0 TFF �⇡! ⇡⇡ [I]
high accuracy Dalitz plot !! ⇡+⇡�⇡0 [C]
e+e� ! ⇡+⇡�⇡0 [C]
!, �! ⇡0l+l� [C]

pseudoscalar TFF �(⇤)�⇤ ! ⇡0, ⌘, ⌘0 at arbitrary virtualities [I,C]
pion, kaon, ⇡⌘ loops �(⇤)�⇤ ! ⇡⇡, KK̄, ⇡⌘ at arbitrary virtualities,

(including scalars and tensors) partial waves [I,C]

Table 14: Priorities for new experimental input and cross-checks.

properties of scalar and tensor resonances, especially their radiative widths.
Recently, the Belle collaboration published the first measurements of ⇡0 and K0

S pairs production in a singly o↵-
shell photon process [103, 566]. The ⇡0⇡0 system is studied for masses between 0.5 GeV  m⇡⇡  2.1 GeV and
helicity angles of the pions with | cos ✓| < 1.0. Momentum transfers between Q2 � 3.0 GeV2 and Q2  30 GeV2

are covered. The TFF of f0(980) and of the helicity-0, -1, and -2 components of f2(1270) are determined separately.
The analogous measurement of the K0

s K0
s system allowed for the first time for equivalent investigations of the TFF of

the f 02(1525). Finally, further constraints arise from timelike processes, which have been measured for singly-virtual
kinematics [227, 567–571].

4.3.3. Other relevant measurements
Anticipating the combined estimate in Sec. 4.9, we discuss here which other, future, measurements will be partic-

ularly useful to improve on the data-driven determination of the HLbL contribution.
Apart from the uncertainty originating from the short-distance regime, the largest individual error is currently

attributed to the axial-vector contributions; beyond that, also scalars and tensors above 1 GeV come with a very
large relative uncertainty and the role of excited pseudoscalar states has been stressed recently in the context of
short-distance constraints [24, 572]. For the estimate of such contributions, data on three- or four-pion as well as
other multi-hadron final states (KK̄⇡, ⌘⇡⇡, ⌘0⇡⇡) are needed. In the past, mostly measurements of the two-photon
production using quasi-real photons were performed. In view of the Landau–Yang theorem [573, 574] that forbids
the coupling of axial vectors to two real photons, new measurements should go beyond that restriction. Studies on the
four-pion final states involving a single virtuality focused on double vector-meson production [575–578].

An experimentally challenging task will be a measurement of the inclusive hadron production cross section in
two-photon collisions at masses between 1 and 3 GeV (see Refs. [579–582] for the on-shell case). The inclusive mass
spectra with one or both of the photons o↵-shell will settle the issue of missing states in the calculations of aHLbL

µ ,
and may lead to an improved matching of this intermediate region to quark-loop estimates that interpolate towards the
short-distance limits.

Beyond these altogether rather poorly known contributions, there is a strong incentive to further improve upon the
dominant, large pieces. For a dispersive analysis of the singly- and doubly-virtual pseudoscalar TFFs, as discussed
in Sec. 4.4, additional, independent experimental information is needed. The data can be divided into necessary
input to the calculations that, together with theory uncertainties, will determine the accuracy of the predictions; and
experimental cross-checks.

For the dispersive description of the TFFs of ⌘ and ⌘0 (that has not been completed yet) [583], experimental
input to constrain the doubly-virtual behavior are of utmost importance. To this end, detailed di↵erential data on
e+e� ! ⌘⇡+⇡� will contribute to an improved understanding of the deviations of the doubly-virtual TFF from the
factorization hypothesis at intermediate energies. Similarly, di↵erential decay data on ⌘0 ! ⇡+⇡�⇡+⇡� will allow
one to develop a double spectral function, and corresponding measurement of ⌘0 ! ⇡+⇡�e+e� will help complete the

107

are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis
of a pion distribution amplitude. Altogether, the TFF is therefore written as [21, 497]
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For the dispersive part, it is useful to decompose the TFF according to the photons’ isovector (v) and isoscalar (s)
components as
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This function obeys a double-spectral representation
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where q⇡(s) =
p

s/4 � M2
⇡, FV

⇡ (s) is the electromagnetic form factor of the pion, and f1(s, q2) the partial-wave ampli-
tude for �⇤(q)⇡! ⇡⇡. The onset of the isoscalar discontinuity is sthr = 9M2

⇡ in the absence of electromagnetic e↵ects,
while taking into account the significant decay ! ! ⇡0� lowers it to M2

⇡0 . siv/is represent isovector and isoscalar cut-
o↵s. FV

⇡ (s) is described in terms of an Omnès representation [251] based on a variety of inputs for the ⇡⇡ P-wave phase
shift and fit to data on ⌧� ! ⇡�⇡0⌫⌧ [185]. The amplitude f1(s, q2) is constructed based on solutions of Khuri–Treiman
equations [261], with a normalization function a(q2) that needs to be adjusted to e+e� ! 3⇡ data. At the real-photon
point, f1(s, q2 = 0) can be tested experimentally in the reaction �⇡ ! ⇡⇡ [614, 615], while Dalitz plot distributions
on !! 3⇡ [586, 587] and �! 3⇡ [52, 585] probe it on the narrow isoscalar vector resonances [588]. For general q2,
a representation of a(q2) with good analytic properties [21] is fit to e+e� ! 3⇡ cross section data by SND [42, 616]
and BABAR [44] up to q2 = (1.8 GeV)2. In particular, a single-variable dispersion relation yields a prediction for the
timelike singly-virtual ⇡0 TFF [21, 613, 617] that is in very good agreement with precise data [76, 537, 618, 619]:
with its correct analytic properties, the dispersive TFF representation links the timelike and the spacelike form factor
seamlessly, such that timelike data helps constrain the spacelike low-energy region where data is still relatively scarce.
Even more importantly, the dispersive formulation as in Eq. (4.27) fixes the doubly-virtual TFF, for which no data at
all is available as yet, from singly-virtual input.

To account for the asymptotic behavior of the TFF in doubly-virtual kinematics, we realize that Eq. (4.22) can be
written in a double-spectral form akin to Eq. (4.27), with a formal asymptotic double-spectral function

⇢asym(x, y) = �2⇡2F⇡xy�00(x � y) , (4.28)

where �00(.) denotes the second derivative of a delta function. Inserting Eq. (4.28) into the double-spectral representa-
tion Eq. (4.27) and integrating over all x and y reproduces the pQCD form of Eq. (4.22) for the asymptotic distribution
amplitude. Restraining however the support for this contribution to energies above a lower matching point sm, the
asymptotic TFF contribution becomes
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which does not contribute for singly-virtual kinematics, but ensures the asymptotic behavior Eq. (4.22) otherwise.
Finally, the addition of an e↵ective pole
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the doubly-virtual behavior relying on the pQCD-based interpolation. Compared to Refs. [19, 21, 22, 497, 642], it
leads to a smaller doubly-virtual form factor in the low Q2 range (by around 20% around Q2 = 0.5 GeV2), resulting
in a value for a⇡

0-pole
µ that is around 10% smaller. Systematic uncertainties inherent in VMD-like models and the

pQCD-motivated interpolation are hard to estimate. We note that all modern evaluations to a⇡
0-pole
µ agree with the

early calculations [473, 488, 501, 503], given the larger uncertainty estimates of the latter. Additional approaches
calculating a nonpole contribution [476, 510, 511, 513, 514, 596, 646, 647, 653–657] are omitted from the discussion
for the reasons discussed in Sec. 4.2.3.

4.4.5. ⌘- and ⌘0-pole contributions
The ⌘ and ⌘0 contributions closely resemble that of the ⇡0, with the additional di�culties inherent to the ⌘–⌘0

mixing, their higher masses, and singularities related to their singlet component. These imply theoretical di�culties
for reproducing their �� decays and asymptotic behavior, Eq. (4.24), producing marked di↵erences in the literature.
Figure 58 (right) also demonstrates that the weight functions in the integral Eq. (4.19) are such that for the heavier
pseudoscalars, larger momentum ranges play a relevant role.

A full dispersive analysis of the ⌘- and ⌘0-pole contributions to aµ along the lines of the ⇡0 analysis described in
Sec. 4.4.2 has not been completed yet. This is partly due to the di↵erent isospin decomposition,

F⌘(0)�⇤�⇤ (q2
1, q

2
2) = Fvv(0) (q2

1, q
2
2) + Fss(0) (q2

1, q
2
2) , (4.35)

which depends on two di↵erent functions and makes the full form factor less amenable to a complete reconstruction
from singly-virtual input only. The dispersive formalism for the singly-virtual ⌘/⌘0 TFF has been established [658]:
while the isoscalar part at low energies can be described in a VMD-type approximation due to the narrowness of
the !(782) and �(1020) resonances, the isovector contribution relies, next to the pion vector form factor, heavily
on data for the decays ⌘(0) ! ⇡+⇡�� [659–661], which show strong deviations from a simple-minded ⇢-dominance
picture [250, 631, 662]. First steps towards an investigation of the doubly-virtual isovector contribution have been
taken [663], which analyze the dipion invariant mass distribution in data on e+e� ! ⇡+⇡�⌘ [54, 85, 164]. Ultimately,
a construction of the double-spectral representation for Fvv(0) (q2

1, q
2
2) will need to proceed based on an amplitude for

⌘(0) ! 2(⇡+⇡�) [664, 665], which is still work in progress. The completion of this low-energy dispersive repre-
sentation by an e↵ective pole and a pQCD-inspired asymptotic contribution in analogy to Eq. (4.25) should then be
straightforward.

The approach of CAs to the ⌘ and ⌘0 contributions bypasses several of the complications above arising in most
theoretical approaches. The methodology is analogous to the ⇡0 with two di↵erences. First, the available data [90–
92, 95, 97, 98, 101, 102, 104, 105] at lower energies allows one to extract additional terms in the series expansion
and avoids the use of the BL limit—the latter can be nevertheless obtained from data and is employed to predict
the OPE limit. Second, the OPE parameter �2 has not been determined for the ⌘ or ⌘0. Instead, an additional 30%
uncertainty for S U(3)F-breaking has been assumed [19]. The prediction thus obtained can be checked against the
recently published BABAR data [108] for the ⌘0 doubly-virtual TFF, the first measurement of its kind ever, albeit out
of the {Q2

1,2| Q2
1,2 < 6.5 GeV2} region that represents 95% of the total a⌘

0-pole
µ contribution. The results are shown in

Fig. 59 and are in good agreement, while the statistics are not su�cient yet to further constrain the doubly-virtual
parameters. This results in

a⌘-pole
µ = 16.3(1.0)stat(0.5)aP;1,1 (0.9)sys ⇥ 10�11 ! 16.3(1.4) ⇥ 10�11 ,

a⌘
0-pole
µ = 14.5(0.7)stat(0.4)aP;1,1 (1.7)sys ⇥ 10�11 ! 14.5(1.9) ⇥ 10�11 . (4.36)

Given the excellent numerical agreement between dispersive analysis and the CA one for the ⇡0-pole contribution and
the very good performance for low-energy timelike data [599, 629], we expect a similar scenario for ⌘/⌘0, while an
independent dispersive calculation ought to be completed as soon as possible.

Similar to the ⇡0 case, very recently two di↵erent groups [642, 643] have computed these contributions using
Dyson–Schwinger equations. The first group accounts for quark-mass e↵ects when computing the—unphysical—
light- and strange-quark TFFs, that are later employed to compute the—physical—⌘/⌘0 TFF using the mixing pa-
rameters determined from phenomenology in Ref. [598], obtaining a⌘/⌘

0-pole
µ = [15.8(1.2)/13.3(0.9)] ⇥ 10�11 [642].
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•  Dispersively to reconstruct the TFFs  Fηγ∗γ∗ from singly-virtual input only is 
more challenging because of different Isospin decomposition 

    Rely on η′ → ππγ as input  
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3.6  Contribution of π0,  η  and η’physics 

22 GeV upgrade 



•  η  and η’ physics enter in one meson contribution 
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Figure 59: Left: BABAR data points [108] with statistical errors (inner bars) and statistical and systematic combined (outer bars) in black, together
with the CA prediction including errors (blue bands). Right: The analogous plot for the diagonal Q2F⌘0�⇤�⇤ (�Q2,�Q2) TFF.
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Figure 60: Comparison of the ⇡0 TFF from dispersion theory [21, 497] (red), CA [19] (blue), and lattice QCD [22] (yellow). We show both the
singly- (left) and the doubly-virtual (right) form factors.

In contrast, the second group [643] includes the U(1)A anomaly e↵ects explicitly, while incorporating additional pa-
rameters subsequently constrained from phenomenology. This allows them to work directly with the physical form
factors [666]. Interestingly enough, the results, a⌘/⌘

0-pole
µ = [14.7(1.9)/13.6(0.8)] ⇥ 10�11 [643], are consistent with

Ref. [642] and with Eq. (4.36).
In addition, holographic estimates for the ⌘ and ⌘0 exist [646, 648]. Furthermore, there are estimates from e↵ective

Lagrangian models [649, 650], which again fail to reproduce the high-energy constraints, as well as from the interpo-
lation formula in Ref. [652]. Once more, we omit calculations of nonpole contributions [18, 510, 511, 514, 646, 653,
655, 657].

4.4.6. Conclusion
The most compelling determinations of a⇡

0-pole
µ fulfilling the outlined quality criteria are in good agreement with

each other and with the lattice determination [22] (see Sec. 5.5 for details) that is obtained from a z-expansion fit,
adjusting the form factor normalization for the experimental PrimEx result [528]:39

a⇡
0-pole
µ (disp) = 63.0+2.7

�2.1 ⇥ 10�11 ,

39Note that these determinations use slightly di↵erent input for the TFF normalization, e.g., with the CA result updated to PrimEx-II the spread
among the central values would become slightly larger—see previous comments.
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Contribution PdRV(09) [475] N/JN(09) [476, 596] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �

� 1(3)tensors � � 1.1(1)
axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

We opted for the following procedure, which we consider more sensible. We first add the errors from the inde-
pendent data-driven, dispersive estimates for the pseudoscalar poles, the pion box, and ⇡⇡ rescattering in quadrature,
yielding ±4.1 ⇥ 10�11, then we add the errors for the model-dependent estimates for the sum of scalars and ten-
sors, the axial-vector contribution, and the short-distance contribution linearly, yielding ±19 ⇥ 10�11, and finally we
combine these two errors and the one from the charm quark loop in quadrature. This leads to our final estimate
aHLbL
µ = 92(19) ⇥ 10�11.

4.9.3. Comparison to the Glasgow consensus and other compilations
The intense activity on the HLbL contribution of the last five years based on the dispersive approach has been

reported in this section and summarized above. It is useful to discuss here in some detail what are the reasons behind
the changes in the numbers compared to the estimates used in 2009, even though on the surface they do not seem
to be so large. We will also comment on a few recent estimates. In Table 15 we have collected the frequently used
compilations for HLbL from 2009 by Prades, de Rafael, and Vainshtein (“Glasgow consensus,” PdRV(09)) [475, 717]
and Jegerlehner and Ny↵eler (N/JN(09)) [476, 596], and a recent update of the latter that has appeared in the book by
Jegerlehner (2nd edition, J(17)) [27]. Our estimate is also shown for comparison.

The main di↵erence of the first three estimates by PdRV [475], N/JN [476, 596], and J [27] to our result is
that they are based purely on model calculations, see also Table 13 in Sec. 4.2 for details of the original works
for some of the individual contributions. Some constraints from theory, e.g., from ChPT at low energies or from
short distances in pQCD, and from experiment are taken into account in those models, e.g., on the singly-virtual
pseudoscalar TFFs. But this model dependence makes it very di�cult to estimate the uncertainty in a reliable way.
On the other hand, our estimates for the numerically dominant contributions from the light pseudoscalar poles ⇡0, ⌘, ⌘0

and for a substantial part of the two-pion intermediate state in HLbL (pion-box and S -wave ⇡⇡ rescattering) are
now based on model-independent dispersion relations or Canterbury approximants and the error estimates are largely
driven by the precision of the input data. To emphasize this significant progress we have evaluated the sum of these
contributions and compared the di↵erent evaluations for the corresponding subtotal in the line labeled as “subtotal”
in Table 15.44 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent

44To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescat-
tering e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is
indeed justified for the scalar contribution �6.8(2.0)⇥ 10�11 in the ENJL model from Ref. [488], as confirmed in Ref. [690]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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Work remains to be done in the theory and experimental sides on η and η’ 
TFFs 
�
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•  π0, η  and η’ allows to study the fundamental properties of QCD and test the 
SM 
–  Extraction of fundamental parameters of the SM 

         e.g. light quark masses  
–  Study of chiral dynamics 
–  Fundamental inputs for calculating LbL of the anomalous magnetic 

moment of the muon 
 
 

•  To studies η  and η’with the best precision: Development of amplitude 
analysis techniques consistent with analyticity, unitarity, crossing symmetry         
dispersion relations allow to take into account all rescattering effects being as 
model independent as possible combined with ChPT          Provide 
parametrization for experimental studies 

 

•  Several improvements and puzzle could be investigated with the  
JLab 22 GeV upgrade         work remains to be done between theorists and 
experimentalists   


