

Unpolarized EMC and Anti-Shadowing Effects exploring w/ 22GeV CEBAF

Zhihong Ye

Department of Physics, Tsinghua University, Beijing, China

01/23-25/2023, Jlab at 22 GeV Workshop

≻Four Regions

Geesaman, Saito, Thomas, Ann. Rev. Nucl. Part. Sci.45, 337 (1995) *Norton, Rept.Prog.Phys. 66 (2003) 1253-1297*

Fermi-Motion:

- ✓ Bound nucleons moving in nuclear medium (offshell, smearing, ...)
- ✓ Easily understood, hard to calculate!
- ✓ Recent discussion on A=2,3

Alekhin, Kulagin, Petti, PRD 96, 054005 (2017) C. Cocuzza, et. al., PRL 127, 242001 Segarra et. al. PRL 124, 092002 (2020)

Shadowing:

EMC? ?

- ✓ multiple-scattering (diffractive)
- ✓ models various (especially when treating along w/ anti-shadowing & EMC)

□ <u>Anti-Shadowing?</u> ?

eq \bar{q} N_1 N_2 N_1

≻ EMC Effect:

EMC: The ratio of inclusive DIS cross-section between a nucleus-A to the deuteron drops linearly in 0.3<x<0.7 Phys.Lett.B 123 (1983) 275-278

□ Modeling:

- $\checkmark\,$ Rescaling of quark & gluon sizes
- ✓ Mean-Field (MIT bag, NJL ...)
- ✓ Multi-quark clusters (6-quark bag)

3.0

2.5

2.0

1.5

1.0

<u>u^/u</u>

► EMC Effect:

JAM Model predicts u and d-quark modified differently in H3 and He3

C. Cocuzza, et. al., arXiv:2104.06946v1

х

≻Anti-Shadowing

- Even poorly known
 - Recover momentum loss from EMC & shadowing is not a good explanation!
- □ May have richer physics info
 - connection with nuclear force?
- Unsettled theoretical explanations
 - Deffractive process (multiple-scattering)?
 - Rescaling (enlarged confiment sizes)?
 - 6-quark bag?
- $\hfill\square$ "No" anti-shadowing in sea quarks
 - Strong flavor-dependence? Drell-Yan, E772, PRL. 64 (1990) 2479-2482
- $\Box \text{ May only exists in } \sigma_L^{DIS} \rightarrow \text{gluons only?}$

Frankfurt, Guzey, Strikeman PRC 95 055208 (2017), Guzey, et.al, PRC86,045201 (2012)

≻Nuclear PDF

- Data unprecise; Limited A-coverage
- $\hfill\square$ Many assumption made in global fit (e.g., flavor-independence, isospin-symmetry)

□ Plenty rooms to improve!

≻Future Measurements

\succ SIDIS in eA:

Super-ratios of hadron/anti-hadron production in SIDIS magnify EMC signals
 Suggest flavor-dependence w/ different hadrons-productions

\succ SIDIS in eA:

□ A list of approved CLAS12 experiments to study Hadronization

- ✓ Beam energy, E0 = 8.8 and 11 GeV
- ✓ Targets: H1, D2, C12, N14, Ar40, Fe56, Kr85, Sn119, Au197
- $\checkmark\,$ Hadrons: detecting all pions and kaons
- ✓ Wide acceptance and 4D (Q2, x, z, P_T) binning

E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		90 Neutron detector RICH (1 sector) Forward tagger	11		liquid
PR12-11-109 (a)	Dihadron DIS production	Avakian	-	•	90			в	D ₂ target
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56				K. Hafidi	
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA					
E12-11-003	DVCS on neutron target	Niccolai	А	90					
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear

Global analysis to systematically extract nPDF and nFF from precise eA SIDIS data

- □ A parallel analysis to extract 3D info of nuclei?
 - Run-group experiment was proposed by R. Dupre, Z. Meziani et. al. and approved

\succ SIDIS in eA:

□ However, there are pros and cons:

* <u>Pros</u>:

- Sensitive to flavor-contents by detecting different hadron types
- \circ Access 3D info by measuring $P_{\rm T}$ distributions

* <u>Cons:</u>

- Common challenges for all SIDIS (w/ nucleons and nuclei):
 - Factorization regions not well defined
 - FF poorly known
 - Theoretical Corrections
 - High-twist , Target Mass, Radiative, ...
- Additional for Nuclei-SIDIS:
 - Nuclear structure
 - Hadronization

Study nPDF with SIDIS:

- □ Start with light nuclei, e.g. He3 and H3:
 - \checkmark Nuclear calculations possible
 - ✓ Measurable EMC effect
 - ✓ Small hadronization effects
 - ✓ Fragmentation functions
 - Expected small nuclear effect
 - Similar in the mirror nuclei
- A bridge between free-nucleons and heavy nuclei

12/26

Small (~ 5% at high-z) effects on He4's nFFs → Safe to ignore medium effect of nFF in A=2, 3

 \checkmark Detecting electrons, pions and kaons

• "Conditionally" approved

✓ Factorization in light nuclei

 \checkmark TMD and FF in A=3

✓ Hadronization in light Nuclei

- Seek theorists' helps to prove A=3 can minimize these challenges
- Ask to provide projections on A=3 nTMD and nFF

≻How energy upgrade helps?

Pros:

- Sensitive to flavor-contents by detecting different hadron types
- \circ Access 3D info by measuring $P_{\rm T}$ distributions

✓ Factorizable!

- □ Current fragmentation region is not clearly defined
- □ Model estimation: Boglione, et. al. Phys. Lett. B 766, 245 (2017)
 - At IIGeV, 70% pions and 20% kaons are valid.
 - At 22 GeV, 35% kaons are valid; also cleaner for pions with eA

Open up kaon phase-space (tight at IIGeV/c), maybe lambda or heavier?

(credit to T.B. Liu, based on Boglione, et. al.

≻Larger Phase-Space

≻eA SIDIS w/ mutiple Hadron-Production

≻eA SIDIS w/ mutiple Hadron-Production

- □ Fully decouple flavor-dependent EMC & Antishadowing in A=3
- To do: implement more theoretical predictions

≻eA SIDIS w/ mutiple Hadron-Production

A-dependence from light to heavy nulcei

EMC & Antishadowing in strange-quarks via Lambda-Production? (ongoing projection)

\succ From 1D to 3D?

□ Models suggest polarized PDFs in Nuclei are modified!

Modification of quark-spin in nuclei?

I. Cloet, PRL 95, 052302, 2005); PLB 642, 210(2006)

Transverse momentum distributions also likely modified

□ To fully understand EMC effect → Nuclear effect in 3D!
 ✓ Measuring pT distribution

$$F_{UU}(x, z, P_T) = \sum_{q} e_q^2 [f_1^q(x, K_\perp) \otimes D_q^h(z, q_T)]$$

Unpolarized TMD Unpolarized FF

\succ From 1D to 3D?

□ Full 3D Projections@Jlab 11/GeV22GeV for A=3, C12&Pb are available → needed to be plotted properly

 \succ From 1D to 3D?

DVCS off He3 and H3 (4 GPD for spin ½ targets):

- Advantage of using DVCS off He3 & H3:
 - ✓ Neutron-contribution dominates in He3-GPDs
 - ✓ Sensitive to GPD-E (orbital angular momentum)
 - ✓ Use H3 to isolate pure neutron/proton contributions
 - ✓ Get access to the flavor-dependence GPDs: $H_u^{He3} = H_d^{H3}$
 - ✓ Medium Modification Effect in GPDs

Run in parallel with C12-21-004 A=3
 SIDIS (no additional beam time)
 Projection (11GeV & 22GeV) ongoing

Summary

- > Origins of EMC and anti-shadowing effects are still largely unknown
 - $\square EMC vs SRC \rightarrow how nucleons are modified?$
 - □ Flavor-dependence of u and d?
 - □ Effects in sea & gluon?
- Poor experimental precision (mostly inclusive-DIS)
 - □ Need more precise data, mutiple techniques
 - □ Theoretical guidances
- ➢ SIDIS with multiple hadron-production at Jlab 22 GeV
 - □ Phase-space, fragmentation regions, corrections
 - \Box Pions, kaons, proton and lambda production \rightarrow Flavor-tagging
 - □ Measuring EMC & Anti-shadowing in 3D: nPDF \rightarrow nTMD & nFF & nGPD

Backup

≻Need Detector Upgrade?

- □ At high-energy, particles go more forward!
- □ Scattered electrons at lower x go to small angles
 - $\checkmark\,$ Need high-granuity & high-resolution Ecal
 - $\checkmark\,$ Need good tracking reconstruction
 - ✓ Background & radiation
- □ Need to seprate more hadrons at high momenta
- □ SoLID Heavy-Gas Chernekov and MRPC-TOF:Pi/K separation up to 7 GeV/c

□ CLASI2-RICH: Pi/K separation up to 8 GeV/c

 CLAS12 & SoLID need detector upgrade for more forward partcles and PID at higher momenta (14GeV/c)

≻Need Detector Upgrade?

CLAS12/SoLID

Pion-SIDIS

Projection

• More Open Geometry

- CLAS12/SoLID
- More Open Geometry

 \succ From 1D to 3D?

 \Box The SIDIS SF with additional P_T dependence:

$$F_{UU}(x, z, P_T) = \sum_{q} e_q^2 [f_1^q(x, K_\perp) \otimes D_q^h(z, q_T)]$$
Unpolarized FF

 \square P_T is the only experimentally accessible quantity: $\vec{P}_T = z\vec{k}_{\perp} + \vec{q}_T + O(k_{\perp}^2/Q^2)$

□ Gaussian ansatz are commonly used but imprecise:

- P_T Broadening to Actual distribution \rightarrow Precision needed!
- □ 4D(Q2, x, z, P_T) SIDIS data off nuclei with multiple hadron states
 ✓ Decouple P_T distributions for individual flavor
 - ✓ Access unpolarized nTMDs and nFFs
 - ✓ Study Hadron Attenuation in light-nuclei
 - \checkmark Medium-modification effects in the transverse directions

> From 1D to 3D?

• The unpolarized SIDIS cross section w/ additional azimuthal dependence:

$$\frac{d^{5}\sigma^{\ell_{P} \rightarrow \ell_{hX}}}{dx_{B}dQ^{2}dz_{h}d^{2}P_{T}} \simeq \sum_{q} \frac{2\pi\alpha^{2}e_{q}^{2}}{Q^{4}}f_{q}(x_{B})D_{q}^{h}(z_{h}) \left[1 + (1 - y)^{2} - 4\frac{(2 - y)\sqrt{1 - y}\langle k_{\perp}^{2}\rangle z_{h}P_{T}}{\langle P_{T}^{2}\rangle Q}\cos\phi_{h}\right] \frac{1}{\pi\langle P_{T}^{2}\rangle} e^{-P_{T}^{2}/\langle P_{T}^{2}\rangle}$$

$$= A + B\cos\phi_{h} + C\cos2\phi_{h}$$

$$Cahn \qquad \text{Boer-Mulder}$$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac$$

- ✤ If we consider the Boer-Mulder Term (very small):
 - A-dependence of the $\cos(\phi_h)$ azimuthal term:

Gao, Liang, Wang RPC 81, 065211 (2010)

- ≻ How energy update helps?
 - Study flavor-dependence of Medium effect of FF

N Chang, et. al. PRC92, 055207 (2015)

nPDF with **SIDIS**

SIDIS with PT measurements

□ XS-Sum and XS-Difference between π^+ and π^- (Factorization, LO, P_T integrated):

$$\begin{array}{l} \square \text{ Super-Ratios between two} \\ \text{nuclei:} \\ R_{A_1/A_2}^{\pi,\pm}(x,z) &= \frac{(\sigma_{A_1}^{\pi^+} \pm \sigma_{A_1}^{\pi^-})/A_1}{(\sigma_{A_2}^{\pi^+} \pm \sigma_{A_2}^{\pi^-})/A_2} \\ &= \frac{4(u_{A_1} \pm \bar{u}_{A_1}) \pm (d_{A_1} \pm \bar{d}_{A_1})}{4(u_{A_2} \pm \bar{u}_{A_2}) \pm (d_{A_2} \pm \bar{d}_{A_2})} \cdot \frac{D_{A_1}^{fav} \pm D_{A_1}^{unfav}}{D_{A_2}^{fav} \pm D_{A_2}^{unfav}} \\ &= A_{A_1/A_2}^{\pi,\pm}(x) \cdot B_{A_1/A_2}^{\pi,\pm}(z), \end{array}$$

$$\square \text{ FF-term can be independently measured:} \qquad B_{A/D}^{\pi,+}(z) = \frac{M_A^{\pi+} + M_A^{\pi-}}{M_D^{\pi+} + M_D^{\pi-}} = \frac{D_A^{fav} + D_A^{unfav}}{D_D^{fav} + D_D^{unfav}}.$$

✓ SIDIS with Nuclei are able to study nPDF and nFF (but global analysis needed for QCD effect)

Flavor-Dependence EMC Effect

➢ Flavor-Dependent EMC Effect in A=3:

- The Super-Ratios are uniquely sensitive to the PDF-contribution:
 - ✓ If N>Z, u-quark is more modified → Tritium?
 - ✓ If N<Z, d-quark is more modified → Helium-3?

$$R_{H/D}^{\pi,+}(x) \simeq \frac{4(u_H + \bar{u}_H) + (d_H + \bar{d}_H)}{5(u + \bar{u}) + 5(d + \bar{d})} \qquad \qquad R_{T/D}^{\pi,+}(x) \simeq \frac{4(u_T + \bar{u}_T) + (d_T + \bar{d}_T)}{5(u + \bar{u}) + 5(d + \bar{d})}$$
$$R_{H/D}^{\pi,-}(x) \simeq \frac{4(u_H - \bar{u}_H) - (d_H - \bar{d}_H)}{3(u - \bar{u}) + 3(d - \bar{d})} \qquad \qquad R_{T/D}^{\pi,-}(x) \simeq \frac{4(u_T - \bar{u}_T) - (d_T - \bar{d}_T)}{3(u - \bar{u}) + 3(d - \bar{d})}$$

• EMC effect on all nucleons: $u_{T,Adep} = \frac{\tilde{u} + 2\tilde{d}}{3}, \quad d_{T,Adep} = \frac{\tilde{d} + 2\tilde{u}}{3},$ $u_{H,Adep} = \frac{2\tilde{u} + \tilde{d}}{3}, \quad d_{H,Adep} = \frac{2\tilde{d} + \tilde{u}}{3},$

•	 EMC effect only on SRC pairs 								
	$u_{T,SRC} = \frac{\tilde{u} + \tilde{d} + d}{3},$	$d_{T,SRC} = \frac{\tilde{d} + \tilde{u} + u}{3},$							
	$u_{H,SRC} = \frac{\tilde{u} + \tilde{d} + u}{3},$	$d_{H,SRC} = \frac{\tilde{d} + \tilde{u} + d}{3},$							

SIDIS with Heavy Nuclei

➢ Nuclear 3D Tomography:

- * 4D-binning (Q^2, x, z, P_T) in SIDIS for light and heavy nuclei
- Study the A-dependence of PDF and PDF in medium

$$B_{A/D}^{h+}(z, p_T) = \frac{M_A^h(z, p_T)}{M_D^h(z, p_T)} = \frac{(N_A^{h+} + N_A^{h^-})/N_A}{(N_D^{h^+} + N_D^{h^-})/N_D}$$
$$R_{A/D}^{h^++h^-}(x, z, p_T) = \frac{N_A^{h^+} + N_A^{h^-}}{N_D^{h^+} + N_D^{h^-}} = A^{h+}(x, p_T) \otimes B^{h+}(z, p_T)$$

 $\clubsuit Look at the p_T dependence (not just broadening)$

✓ A comprehensive way to study nuclear-effect in QCD

SIDIS with Heavy Nuclei

≻ Nuclear 3D Tomography:

♦ Possible to extraction of k_{\perp} and p_{\perp} distributions:

 $\vec{P}_T = \vec{p}_{\perp} + z_h \vec{k}_{\perp} + O(\frac{k_{\perp}^2}{Q^2})$, not 100% correct in full QCD but roughly hold

- ✓ Extrapolation to $z_h \rightarrow 0$ to extract the distributions of \vec{p}_{\perp}
- ✓ The slope gives the ("relative") distributions of \vec{k}_{\perp}

- \clubsuit By comparing the distributions of extracted \vec{p}_{\perp} and \vec{k}_{\perp} in different nuclei:
 - $\circ~$ From \vec{k}_{\perp} , does the quark shrink or enlarge when A is larger?
 - $\circ~$ From $\vec{p}_{\perp},$ does the quark shrink or enlarge after it is struck out?
 - $\circ~$ Is the Gaussian Ansatz hold for \vec{p}_{\perp} and $\vec{k}_{\perp}~$ in all nuclei?

