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Introduction

What questions are we trying to answer?
• What is the origin of the EMC effect
• What is the partonic structure of a bound nucleon?
• How is the nucleon modified in nuclear medium?
• How are hadrons modified in nuclear medium?

And how does 22 GeV help?
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Nuclear Medium Effects
EMC Effect in DIS
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Is structure function modified?
Significant even in 4He!

Origin of effect remains unclear

Polarization Transfer
GE
GM

= −P
′
x

P ′z

(E + E′)
2M tan θ/2

Py is a measure of FSI

Quasi-elastic knockout possibly
observing medium modified form

factors
2H: B. Hu et al., PRC 73, 064004 (2006). 4 He: S. Dieterich et al., PLB 500,
47 (2001); S. S., et al., PRL 91, 052301 (2003); M. Paolone, et al., PRL 105,

0722001 (2010); S. Malace et al., PRL 106, 052501 (2011)

Coulomb Sum Rule

SL(q) = 1
Z

∫ ∞
ω+
th

dω
RL(q, ω)
|GpE |2(Q2)

Cloet, et.al., Phys.Rev.Lett. 116 (2016)032701
Lovato, et.al., Phys.Rev.Lett. 111 (2013)092501

Observations of quenching the CSR
remain contested.
New theory predictions will be put to
the test with soon to be completed
JLab experiment.
But nuclear effects persist in the form

of corrections and possibly cloud
conclusions.
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The Challenge of Nuclear Effects
And attempts to overcome them

EMC Effect in DIS
Control initial state via Spectator
tagging – separate mean field and
SRC nucleons
FSI introduce model dependence

Partonic interpretation

Polarization Transfer
Induced polarization (Py) pro-
vides feedback to FSI model FSIs

But only a Nucleonic Observable:
What is going on with the quarks
and gluons?

Coulomb Sum Rule
Observations of quenching
complicated by model depen-
dent nuclear corrections

Nucleonic Interpretation

Model dependent corrections and FSIs are significant barrier to unambiguously identifying any
modification at the partonic level.

Can we connect the Partonic and Nucleonic interpretations while systematically controlling final-
state interactions and other model dependence?
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Spectator-Tagged DVCS

Incoherent DVCS on bound nucleon with the spectator system (A-1) tagged with low energy recoil detector

N

e e′

γ∗

A− 1

N

γ

e e′

γ∗

A− 1

A clean link between the Partonic and Nucleonic
• Combines some good features of DIS and QE scattering
• DVCS → parton level interpretation
• Tagging spectator → identify struck nucleon and its initial momentum
• separate mean field from high momentum nucleons
• Fully exclusive measurement → unique handle to study and minimize FSIs
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Neutron DVCS: A sensitive probe for medium modifications

α∗n
αn

= bound n
quasi-free n =

Asinφ
LU (4He)
Asinφ
LU (2H)

∼
Im( −t4M2F

n∗
2 En

∗
+ xBG

n∗
M H̃n

∗
)

Im( −t4M2F
n
2 En + xBGnMH̃n)

Cloët, Bentz, Thomas. Phys.Lett. B642 (2006) 210-217

The ratio in the forward limit looks like
α∗n
αn

= bound n
quasi-free n −→

µn∗

µn

gn
∗

1 (x)
gn1 (x) ,

µn∗ → nucleonic modification
gn
∗

1 →‘ partonic modification

Polarized EMC Effect and Medium Modified Form Factors

DVCS on a bound neutron is a uniquely sensitive probe of medium modifications
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The ALERT Experiments
A comprehensive program to study nuclear effects

ALERT Requirements

• Identify light ions: H, 2H, 3H,
3He, and 4He

• Detect the lowest momentum
possible (close to beamline)

• Handle high rates
• Survive high radiation

environment
→ high luminosity

• TOF is degenerate for 2H and 4He.
• dE/dx can separate these.
• At higher p, scintillator topology can also

be used to separate.
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Incoherent DVCS on 4He and 2H

• 4He(e, e′γ p+3H)
• 4He(e, e′γ+3He)n
• 2H(e, e′γ + p)n

Identify medium modified nucleons

Coherent Processes on 4He

• 4He(e, e′ 4He γ)
• 4He(e, e′ 4He φ)

Explore the partonic structure of 4He

Tagged EMC Effect

• 4He(e, e′+3H)X
• 4He(e, e′+3He)X
• 2H(e, e′ + p)X

Test FSI and rescaling models

And many more channels for free
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PWIA and FSIs

Plane-Wave Impulse Approximation

1 Virtual photon is absorbed by a single
nucleon

2 This struck nucleon is the detected
nucleon

3 It leaves the nucleus without
interacting with the A-1 spectator
system ~p1 = −~PA−1

PWIA is the reference model for studying FSIs

• The PWIA is arguably the simplest model for FSIs (there are
none!)

• All kinematics are computed within this reference model
• Deviations from the PWIA provide information about the nature

of FSIs
• All IA models that leave an off-shell spectator require FSIs

• Incoherent scattering means the lab frame is not the
target nucleon rest frame.
→ The nucleus turns the system into a lousy collider
configuration.

√
δs up to 1 GeV for 4He

• CM energy decreases in typical ”low FSI”
configurations, ie, backwards.

• A 22 GeV beam helps to mitigate this loss of
kinematic reach for incoherent processes.

0.0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 30 60 90 120 150 180

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ps = 0 GeV/c
ps = 0.1 GeV/c
ps = 0.2 GeV/c

θs [degr]

nFS
I

D
(p

,q
)/n

D(
|p

|)

θs = 0o

θs = 180o

θs = 90o

ps [GeV/c]

EPJ, A19, 145-151, 2004

q1 q2

p1

p′2

p2

pA

p′A−1

pA−1

k

tq

tp

W. R. Armstrong January 25, 2023 7 / 12



Fully Exclusive Incoherent DVCS
Detect all final state particles
Theoretical help needed!

• 4He(e, e′γ +3 Hp)
• Proton DVCS on 4He
→ Measure full final state with ALERT

• Study FSIs with proton
→ apply to neutron channels.

• 22 GeV ALERT experiment helps understand FSIs
• 4He(e, e′γ +3 He)n
• 2H(e, e′γ + p)n

Looking to future

• Theory development moving closer to fully exclusive tagged
incoherent DVCS on 4He.

• Need help working out best way to leverage kinematic redundancy
to study FSIs.
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Tagged DVCS: Off-forward EMC Ratio
The plot below is for 12 GeV configuration. At 22 GeV, higher Q2 possible.
Forward detector kinematics similar to DVCS on the nucleon (see WG4 session on Tuesday)
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harmonic

• αLU =
∫
ALU sinφdφ
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Off-forward EMC Ratio

4He(e, e′γ +3 He)n
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Off-forward EMC Ratio
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• Separated mean field nucleon
Off-forward EMC Effect and high
momentum nucleon Off-forward EMC
Effect
• With FSIs systematically controlled,

observed deviations from unity indicate
nuclear medium modifications of
nucleons at the partonic level

4He + γ∗ → γ + (n) + 3He

2H + γ∗ → γ + (n) + p

4He + γ∗ → γ + p + 3H
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Summary

• Tagged DVCS will bridge the gap between Partonic and Nucleonic interpretations
of medium modifications.
• Unique opportunity to cleanly connect the partonic structure of a “free nucleon” to its

in-medium partonic structure
• This first-of-its-kind measurement with ALERT is complementary to a wide variety of

existing and proposed experiments
• Full exclusivity provides ability to systematically study and control FSIs
• 22 GeV will give more of a lever arm on FSIs
• Attn Theorists: Predictions/model calculations needed for fully exclusive reaction

4He(e, e′γ p+3H)
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Thank you!
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Backup
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Toy model of Kinematics with FSIs
The power of exclusivity

For simplicity, fix virtual photon momentum:
ν1 = 9 GeV, Q2 = 2.65 GeV2,

Sample 4He momentum distribution and sample uniformly the
LIPS for proton and photon final state. Then generate a
massless momentum exchange between the final state proton
and spectator

0 < |~k| < 200MeV/c

q1 q2
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k

tq
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Goal
Demonstrate that with a fully detected final state we can identify events with significant FSI which have kinematics
inconsistent with the PWIA
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FSI Toy Model
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FSI Toy Model
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Useful tool for demonstrating idea but
We need theoretical help to realistically model FSI and test effectiveness.
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Neutron DVCS: A sensitive probe for medium modifications

Asinφ
LU,n ∝ Im

(
Fn1 Hn − t

4M2F
n
2 En + xB

2 (Fn1 + Fn2 )H̃n
)

Term by term breakdown:
1 Suppressed by neutron Dirac FF
2 Connected to Ji’s sum rule and quark

OAM through GPD
3 Related to Polarized EMC effect and

Modified Form Factors

Connection to Spin Structure Functions and
Modified Form Factors:

The third term above is
Im
(
(F1 + F2)H̃

)
= GM (t)Im(H̃(ξ, ξ, t))

Forward Limit (at leading order):
Im(H̃(x, ξ, t))→ H̃(x, 0, 0) = g1(x)

GM (t)→ µ
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CLAS eg6 (E08-024)
Incoherent DVCS

• Unconstrained initial state: virtual
photon-nucleon CM energy unknown due to
Fermi motion

• Off-forward EMC Effect calculated using
denominator from different experiment
introduces extra systematics

• Interesting results, but, inconclusive
interpretation: similar to untagged EMC
Effect
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M. Hattawy, et al. PRL 123 (2019).

Interesting results but inconclusive (similar to
regular EMC effect).
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Experiment Setup: CLAS12 + ALERT

• Use CLAS12 to detect scattered electron, e′, and
forward scattered hadrons.

• A low energy recoil tracker (ALERT) will detect the
spectator recoil or coherently scattered nucleus

ALERT Requirements

• Identify light ions: H, 2H, 3H, 3He, and 4He
• Detect the lowest momentum possible (close to

beamline)
• Handle high rates
• Survive high radiation environment
→ high luminosity

• Provide independent trigger or high luminosity
thresholds

• ALERT will replace the CLAS12 silicon vertex tracker
(SVT) and the first layer of micromegas.
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ALERT PID
• TOF is degenerate for 2H and

4He.
• dE/dx can separate these.
• At higher p, scintillator

topology can also be used to
separate.
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Ultrafast x ray pump-probe

• Breakdown of Born-Oppenheimer
Approximation

• Initial state is modeled
• Final state after long time is known
• Studying the response for different parameters

(∆t, λ, etc...) allows the model of dynamics to
be better understood.

• Requires high intensity to resolve diffractive
pattern

Incoherent Tagged DVCS

• Breakdown of PWIA
• Initial state is modeled
• Final state is fully measured (γ, p, A-1)
• Studying the response for different paramters

(Ps, θs, φs, x, Q2, t, φ...) allthe model of the
nuclear dynamics to be refined

• Requires high luminosity to resolve
multidimensional FSI pattern
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