Color transparency studies at 22 GeV

Holly Szumila-Vance In collaboration with Dipangkar Dutta Jefferson Lab Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop 25 Jan 2023

Color Transparency studies at Jlab probe the anticipated "onset regime"

Introduced by Mueller and Brodsky, 1982

Vanishing of initial/final state interaction of hadrons with nuclear medium in exclusive processes at high momentum transfer

Color Transparency studies at Jlab probe the anticipated "onset regime"

- Hadron fluctuates to small transverse size (quantum mechanics)
- Maintains this small size as it propagates out of the nucleus (relativity)
- Experiences reduced attenuation in nucleus, color screened (strong force)

Traditional picture -> energy independent:

- NN cross section
- Glauber multiple scattering
- FSI and correlation effects

An interesting picture has arisen...

Onset not observed for protons at $Q^2 = 14 \text{ GeV}^2$

Parallel kinematics: reduced FSIs, $\theta_{pq} = 0$

Near-term experiments extend meson CT measurements

Same kinematics strategy....higher beam energy in Hall C

Increasing beam energy:

- $E_b = 13.2 \text{ GeV or } E_b = 17.6 \text{ GeV}$
- x4 rate increase from 13.2 -> 17.6 GeV
- Both E_b kinematics are limited to approx. max Q²=12.5 GeV² to keep t<1 GeV² (reduced FSI)
- At 17.6 GeV, run HMS at high P_{central}

200 hours beam on target:
E _b = 17.6 GeV
Q ² =9.5, 11, 12.5 GeV ²

Beam hours on each target, 3% uncertainty

	9.5	11	12.5
Н	1.5x2	7x2	13x2
D	1.5	7	13
С	2	9	16
Cu	7	37	66
			(

22 GeV implications for the rho meson

Assumes same number of beam days at 11 and 22 GeV for comparison

Courtesy of L. El Fassi

Same kinematics strategy....higher beam energy in Hall C

But what about the protons?!

The Future of Color Transparency and Hadronization Studies at Jefferson Lab and Beyond

June 2021 101 participants, 22 talks, 6 discussion topics https://indico.jlab.org/event/437

Key ideas emerged (implications for today's talk):

- Interpretations for the recent Hall C results
- Explore other experimental avenues

No observation of the onset of CT at $Q^2 < 14 \text{ GeV}^2/c^2$

Explanations: • No PLC was formed (Feynman Mechanism) PLC Hustration: M. Sargsian after (a) PLC Feynman

G. Miller, Physics 2022, 4(2), 590-596; <u>https://doi.org/10.3390/physics4020039</u>

O. Caplow-Munro and G. Miller, PRC 104, L012201 (2021)

 Not high enough in Q²
(Holographic light front QCD predictions)
S. Brodsky and G. de Téramond, Physics 2022, 4(2), 633-646; https://doi.org/10.3390/physics4020042
T_A
proton: 14 GeV² < Q² < 22 GeV² S. Brodsky

erson Lab

Embrace dirty kinematics!

Traditionally looked in regions with already reduced FSIs (parallel kinematics)

New approach to choose kinematics with large FSIs and compare with kinematics with low FSIs and map the Q² dependence

Parallel kinematics -> high rates, small FSI proton initial momentum parallel to q-vector

Deuterium and dirty kinematics

Deuteron has well known FSI contributions from double scattering

Double-scattering is the square of re-scattering amplitude of knocked out nucleon

Can construct the ratio, R = XS high FSI / XS low FSI – varied by P_r or angle

Deuterium and dirty kinematics

P_n =0 in the absence of any nuclear medium effects (FSI filter)

Dirty kinematics: large P_r

CT signature: $P_n \rightarrow 0$ with increasing Q^2

Pn (normal) component of polarization transfer

- Construct double focal plane polarimeter for SHMS to measure P_n for ²H, ¹²C, ⁶³Cu
- p(e,e'p) for self-calibration (analyzing power, A_c) and false asymmetry
- Already measured proton form factors

Statistical uncertainty:

$$\Delta P_n = \frac{\pi}{2} (N_0 \epsilon)^{-1/2}$$

Where $\epsilon = A_c^2 f$ And f is the useful fraction of events in the FPP acceptance

> Using ϵ =0.003 and 13 GeV beam, scan Q² and targets: 2-10 GeV² (ΔP_n <0.1) = 200 hrs

- A. Saha et al., PR 91-006, Hall A proposal.
- B. Anklin H. et al., The ELFE Project, Conference Proceedings, Vol. 44, p.223 (1993)

SRC breakup and target ratios

With E_b upgrade:

- Extend nucleon momentum and Q²
- Explore A-dependence
- A(e,e'pN)/A(e,e'p)?
- Proton vs neutron T

M. Duer et al., PLB 797:134792 (2019) O. Hen et al, PLB 722:63 (2013)

Left-right asymmetry in A(e,e'p) in perpendicular kinematics

Bianconi, Boffi & Kharzeev, PLB 325, 294 (1994)

L-R Asymmetry is very sensitive to FSI at large P_{miss} , away from parallel kinematics ($|\theta_{pq}| > 0$)

Summary

- CT onset not observed in protons in parallel kinematics (small FSI). Higher beam energy can explore slightly higher Q².
- Observations in mesons consistent with CT. Higher beam energies access higher Q² with improved rates.
- Numerous avenues to explore onset of CT in proton with high FSIs and non-traditional kinematics – higher beam energy improves rates and could extend Q² access
- Hall C would further benefit from at least 1 spectrometer upgrade to access higher Q² kinematics

