

Super-fast quarks at the Luminosity Frontier

John Arrington, Lawrence Berkeley Lab

Science at the Luminosity Frontier: JLab at 22 GeV Jefferson Lab, Jan 25 2023

Modification of nucleon structure in nuclei

- The EMC effect*
- Understanding nucleon modification is extremely interesting and important*

*See the 10 other talks in this session

1/25/2023

JLab@22 GeV: Super-fast quarks

2

Modification of nucleon structure in nuclei

- The EMC effect*
- Understanding nucleon modification is extremely interesting and important*
- Super-fast quarks! EMC effect in a completely new regime
 - Nuclear pdf modification in region where pdfs are very small

*See the 10 other talks in this session

Nuclear pdfs at x>1

- Six-quark bag was potential explanation for the EMC effect
 - Two interacting 3q bags \neq one 6q bag
 - Impact in the EMC effect region very small

1/25/2023

JLab@22 GeV: Super-fast quarks

Nuclear pdfs at x>1

- Six-quark bag was potential explanation for the EMC effect
 - Two interacting 3q bags ≠ one 6q bag
 - Impact in the EMC effect region very small
- Momentum sharing more important at largest quark momenta
 - **Dramatic enhancement** (order of magnitude) over simple convolution (high-x quarks in high-momentum nucleons)
- Similar for any mechanism that allows direct momentum sharing, while off-shell effects and other models suggest suppressed pdfs

0.8

0.6

1.0

1.2

X

1.4

1/25/2023

JLab@22 GeV: Super-fast quarks

 $q_A(x)$

10-

5

1.8

2.0

1.6

Other calculations for super-fast quarks

Misak Sargsian and Christian Weiss

1/25/2023

Other calculations for super-fast quarks

Various models (color screening, PLC suppression, rescaling, off-shell) yield suppression in tagged scattering for large nucleon momenta, large $x \rightarrow$ large (~factor 2) F₂ suppression for x>1

Other calculations for super-fast quarks

Updated predictions of F₂(x) at x>1 in progress: Sargsian, Li, Kim, Miller, JA... Various models (color screening, PLC suppression, rescaling, off-shell) yield suppression in tagged scattering for large nucleon momenta, large $x \rightarrow large$ (~factor 2) F_2 suppression for x>1

Important to have consistent evaluation (pdfs, Q²,...)

1/25/2023

Challenges to interpreting SFQ distributions

- High energies needed to isolate DIS at large x
 - 6 GeV experiment limited to 8-9 GeV²
- Cross section very small (x>1, high Q²)
- Need reliable calculations to use as 'baseline'

Challenges to interpreting SFQ distributions

Challenges to interpreting SFQ distributions

- High energies needed to isolate DIS at large x ۲ 6 GeV experiment limited to 8-9 GeV² 0
- Cross section very small (x>1, high Q^2) ۲

N. Fomin et al, PRL 105 (2010) 212502

0.55

0.65

10

10-2

1/25/2023

1/25/2023

JLab@22 GeV: Super-fast quarks

13

22 GeV

- 6 GeV data, Q²<8 GeV²: QE dominated, looks ("by eye") consistent with scaling
- 11 GeV, Q²<16 GeV² : DIS comparable to resonance region; QE small
 - Not a precise measurement of pdfs; expect modest scaling violations (which can be measured)
 - Could be very compelling if very large deviations observed
- 22 GeV, Q² ≈ 36 GeV²
 - Much smaller resonance contributions
 - Better check of scaling (Q² dependence)
 - Push to higher x at 'lower' Q² larger predicted effects

Plot (Sargsian) illustrates small QE contribution Need to update Resonance vs DIS estimate

Kinematic projection (not quite right yet)

- 24 GeV: made kinematic/cross section projections 1992 CEBAF@HE workshop
 - Don't have electronic versions of full results
 - Available plots didn't cover the highest Q² (SFQ) kinematics 🟵

Kinematic projection (not quite right yet)

- 24 GeV: made kinematic/cross section projections 1992 CEBAF@HE workshop
 - Don't have electronic versions of full results
 - Available plots didn't cover the highest Q² (SFQ) kinematics 🟵

- 2uA, 3.4 msr solid angle
- 15cm LD2 target, 6-12% R.L. targets
- \circ θ_{max} < 35 degrees at highest Q²

Kinematic projection (not quite right yet)

- 24 GeV: made kinematic/cross section projections 1992 CEBAF@HE workshop
 - Don't have electronic versions of full results
 - Available plots didn't cover the highest Q² (SFQ) kinematics $\ensuremath{\mathfrak{S}}$

- 2uA, 3.4 msr solid angle
- 15cm LD2 target, 6-12% R.L. targets
- \circ θ_{max} < 35 degrees at highest Q²
- 22 GeV projections
 - Straightforward; still need to be done

Where do we go from here?

- Short-term:
 - Compare baseline convolution calculations, including pdf, TMC, HT effects
 - Extract the inclusive x>1 structure function from various models vs x, Q²
 - Map out kinematic coverage, experimental needs for 22 GeV experiment
- 11 GeV: First test in compare of deuteron data to calculations
 - Try to quantify how well F₂ connects to pdfs at these kinematics
 - Look for potentially large increase (suppression) over baseline convolution
 - If observe large effect (relative to uncertainties associated with limit Q²), look at A-dependence: 2H, 4He, 12C, 40Ca to see if it scales as predicted
- 22 GeV:
 - Cleaner measurement at much higher Q²
 - Extend x range, where several models show rapid variation
 - Examine Q² dependence test/constrain HT contributions

1/25/2023

1/25/2023

Quark hadron duality in nuclei

Quark hadron duality in nuclei