Bound nucleon structure from tagged DIS with a 22 GeV CEBAF

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop

> Jefferson Lab Newport News, VA

Tyler Kutz MIT/TAU

January 25, 2023

MORTIMER B. Ζυςκέρμαν STEM LEADERSHIP PROGRAM

X

Shadowing (x < 0.05-0.1):
 Large A-dependent suppression

2

- Shadowing (x < 0.05-0.1):
 Large A-dependent suppression
- Anti-shadowing (0.1 < x < 0.3):
 Small enchantment, no
 conclusive A dependence

- Shadowing (x < 0.05-0.1):
 Large A-dependent suppression
- Anti-shadowing (0.1 < x < 0.3):
 Small enchantment, no
 conclusive A dependence
- EMC effect (0.3 < x < 0.7): Large A- and x-dependent suppression

- Shadowing (x < 0.05-0.1):
 Large A-dependent suppression
- Anti-shadowing (0.1 < x < 0.3):
 Small enchantment, no
 conclusive A dependence
- EMC effect (0.3 < x < 0.7): Large A- and x-dependent suppression
- Fermi motion (x > 0.7)

Existing (inclusive) data has taken us far, but not far enough...

- Integrates nuclear structure over all nucleons, whole wavefunction, etc.
- Has been used to establish average EMC effect and A-dependence in wide range of nuclei A
 - Cannot answer...
 - ...which nucleons are modified?
 - ... is modification momentum-dependent?
 - ... are protons and neutrons modified the same?

Two example EMC effect mechanisms

All nucleons slightly modified?

Rare high-momentum nucleons highly modified?

Two example EMC effect mechanisms

Tagged DIS can discriminate between these two pictures!

- Parton structure from electron
- Nuclear state from spectator nucleon
- Account for initial momentum of nucleon

- Parton structure from electron
- Nuclear state from spectator nucleon
- Account for initial momentum of nucleon
 - $\alpha_S \sim p_i$

- Parton structure from electron
- Nuclear state from spectator nucleon
- Account for initial momentum of nucleon
 - $\alpha_S \sim p_i$
 - $x_B \to x'$

- Parton structure from electron
- Nuclear state from spectator nucleon
- Account for initial momentum of nucleon
 - $\alpha_S \sim p_i$
 - $x_B \to x'$
 - $W \to W'$

- Parton structure from electron
- Nuclear state from spectator nucleon
- Account for initial momentum of nucleon
 - $\alpha_S \sim p_i$
 - $x_B \rightarrow x'$
 - $W \to W'$
- Minimize FSI by detecting backward spectators and forming ratios

Tagged DIS efforts at Jefferson Lab

Past/current

- BoNuS (Proton-tagged DIS from deuterium)
- BAND (Neutron-tagged DIS from deuterium)

Future:

- ALERT (³H/³He tagged DIS from ⁴He)
- LAD (Proton-tagged DIS from deuterium)

IS from deuterium) DIS from deuterium)

DIS from ⁴He) from deuterium)

What is the free neutron structure?

What is the free neutron structure?

Tagged DIS can probe selected regions of the nuclear wave function Griffioen et al

Griffioen et al., PRC (2015)

Large modification of (rare) high-momentum states!

BAND (Backward Angle Neutron Detector) and CLAS12

• e^- to CLAS12, spectator n to BAND

• Addition to Run Group B

Segarra et al., NIMA 978, 164356 (2020) Denniston et al., NIMA 973 164177 (2020)

Tagged DIS kinematics

What could be done with a 22 GeV electron beam?

- Approach:
 - Assume detectors the same, only beam energy changes
 - Use same luminosity (180 fb⁻¹) as RGB data used for present analysis
 - Estimate rates with fast Monte Carlo (CLAS12 electron acceptance, BAND neutron acceptance/efficiency)

10

Projected statistical reach in data ratio at 22 GeV

Χ'

11

Summary

- Tagged DIS allows measurements of parton structure sensitive to nuclear configuration
- - Existing BoNuS data from 6 GeV; BoNuS12 collected data in 2020
- BAND/CLAS12 carried out first measurement of neutron-tagged DIS from deuterium
- Upgraded 22 GeV electron beam would extend possible tagged-DIS measurements further into anti-shadowing and EMC effect region

BoNuS used proton-tagged DIS from deuterium to extract free neutron structure

