Prospects of DVCS @ 22GeV at JLab

SCIENCE AT THE LUMINOSITY FRONTIER: JEFFERSON LAB AT 22 GEV

Volker Burkert, Jefferson Lab

January 23, 2023 to January 25, 2023

GPDs and 3D Imaging of Nucleons

longitudinal momentum.

2

< JSA

ENERGY Office of Science

(2+1)D images in transverse space and densities, $F_2(x)$, $g_1(x)$.

4 chiral even GPDs H, E, H, E (x,ξ,t)

DVCS +BH - path to probing GPDs (CFFs)

DVCS

GPDs

BH

λων γ

р

Interference

p

е

x+ξ

е

р

е

ENERGY Office of Science

Polarized beam, **unpolarized** target:

 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + k F_2 E \} d\phi$

 $H(\xi,t)$ Unpolarized beam, **longitudinal** target:

 \mathbf{Z}

 $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{ \mathsf{F}_1 \widetilde{H} + \xi (\mathsf{F}_1 + \mathsf{F}_2) (H + \xi / (1 + \xi) E) \} d\phi$ $\widetilde{H}(\xi,t)$

Unpolarized beam, **transverse** target:

 $\Delta \sigma_{\text{UT}} \sim \cos \phi \sin(\phi_{\text{s}} - \phi) \operatorname{Im}\{k(F_1 E - F_2 H)\} d\phi$

Unpolarized cross section:

Re(CFFs), separate h.t. contributions to DVCS

3

 $E(\xi,t)$

Observables sensitive to GPDs/CFFs

			_	
	Ζm	${\cal R}$ e		
${\cal H}$	ALU	σ		
$\mathcal{ ilde{H}}$	AUL	A., A		
ε	AUT			

U.S. DEPARTMENT OF Office of Science

	Meson	Flavor
	$ ho^+$	u - d
\mathcal{H}, \mathcal{E}	$ ho^{0}$	2u + d
	ω	2u – d
	ϕ	g

Enables flavor separation of GPDs

Prospects - Hall A/C

- There have been no specific DVCS estimates for Hall A/C for the July/September meetings or after that.
- With respect to 11 GeV kinematics, at 22 GeV phase space is roughly extended by a factor of 2 in Q² (no significant differences in x_B and t).
- The full 11 GeV program can be done at 22 GeV at a higher value of Q².

(from: Carlos Munoz Camacho)

Office of

Science

Hall A data from Jlab@12 program

Explore high x_B region for the first time

Phys. Rev. Lett. 128 (2022) 25, 252002

The CLAS12 Spectrometer at Jefferson Lab

Baseline equipment Forward Detector (FD)

- TORUS magnet (6 coils)
- HT Cherenkov Counter
- Drift Chamber System
- LT Cherenkov Counter
- Forward ToF System
- Pre-Shower Calorimeter
- E.M. Calorimeter

Central Detector (CD)

- SOLENOID magnet (5T)
- Central Tracker (SVT, MM)
- Central Time-of-Flight
- Central Neutron Detector

Beamline

- Liquid & solid targets
- Moller Polarimeter
- Photon Energy Tagger

Ancillary equipment

- RICH Detector 2 sectors
- Polarized Target (long.)

Nuclear Inst. and Methods in Physics Research, A 959 (2020) 163419 + 17 articles on all subsystems.

Can CLAS12 @ 22GeV operate at 11 GeV luminosities?

7

• CLAS12 luminosity limited by accidental occupancy of DC R1.

JSA

ENERGY Office of Science

High occupancy in part of R1 limits acceptable operating luminosity.

	R1	R2	R3
CLAS12 @ 11 GeV	2.6%	0.76%	1.18%
CLAS12 @ 24 GeV	2.8%	0.77%	1.23%

Accidental occupancies increase by less than 10% at 24 GeV compared to 10.6 GeV.

→ higher resolution tracking layers to double luminosity.

Z. Meador, L. Elouadrhiri

Polarized targets for CLAS12

Target in use to measure DVCS and all other processes on longitudinal polarized protons and deuterons(neutrons).

Exploits full acceptance of the CLAS12 configuration

< JSA

Office of

Science

ENERGY

Longitudinal polarized target operational with full CLAS12 acceptance in operation.

 $\Delta \sigma_{\mathsf{UL}} \sim \sin \phi \operatorname{Im} \{ \mathsf{F}_1 \tilde{H} + \xi (\mathsf{F}_1 + \mathsf{F}_2) (H + \xi / (1 + \xi) E) \} d\phi$

Transverse polarized target in development for CLAS12 experiments. Access GPD *E* in Ji sum rule.

$$\Delta \sigma_{\mathsf{UT}} \sim \cos \phi \sin(\phi_{\mathsf{s}} - \phi) \operatorname{Im} \{ \mathsf{k}(\mathsf{F}_2 H - \mathsf{F}_1 E) \} d\phi$$

CLAS12 Charged Particle Identification in FTOF & CTOF

< JSA

Particle ID in CLAS12 (forward)

U.S. DEPARTMENT OF Office of Science

Ċ

< JSA

π^{o} and γ detection in ECAL

C. Smith

• At 24 GeV beam energy most π^0 events will be reconstructed in ECAL.

< JSA

Office of

ENERGY Science

DVCS @ 24 GeV – electron – photon – proton detection

0.1

ENERGY Office of Science

0.2

0.3

Office of

0.4

0.5

< JSA

0.6

0.7

0.8

xB

Beam spin asymmetry A_{LU} (E=24GeV)

From full simulations & reconstructions

F.X. Girod

< JSA

3D imaging of quarks in the proton

Analysis from simulated data (VGG) with CLAS12 response (11GeV).

From the **DVCS cross section and polarization observables** the Compton Form Factors $\mathcal{H}(\xi, t)$, $\mathcal{E}(\xi,t)$ may be determined at **fixed values of** ξ versus t.

A Fourier transform in t in **LC kinematics** determines the quark distribution in impact parameter(b_x , b_y) space at fixed ξ , x_B .

M. Burkardt

ENERGY

$$\rho_{\mathbf{X}}(x,\vec{b}_{\perp}) = \int \frac{\mathrm{d}^{2}\vec{\Delta}_{\perp}}{(2\pi)^{2}} \left[H(x,0,t) - \frac{E(x,0,t)}{2M} \frac{\partial}{\partial b_{y}} \right] \mathrm{e}^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}}$$

JSA

Office of

Science

Contribution of H+E

Proton transverse profile in valence quark domain

< JSA

Beyond 3D Imaging – Gravitational FFs

P. Schweitzer

$$\int_{-1}^{1} dx \, x H_q(x,\xi,t) = A_q(t) + \xi^2 D_q(t),$$

$$\int_{-1}^{1} dx \, x E_q(x,\xi,t) = B_q(t) - \xi^2 D_q(t),$$

$$B_q(t) = 2J_q(t) - A_q(t)$$

Gravitational form factor of the EMTs

$$\begin{split} \langle p', \vec{s}' | T_a^{\mu\nu}(0) | p, \vec{s} \rangle &= \overline{u}(p', \vec{s}') \left[\boxed{A_a(t)} \frac{P^{\mu}P^{\nu}}{M_N} \\ &+ \boxed{D_a(t)} \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2}{4M_N} + \overline{C}_a(t) M_N g^{\mu\nu} \\ &+ \boxed{J_a(t)} \frac{P^{\{\mu}i\sigma^{\nu\}\lambda}\Delta_{\lambda}}{M_N} - S_a(t) \frac{P^{[\mu}i\sigma^{\nu]\lambda}\Delta_{\lambda}}{M_N} \right] u(p, \vec{s}) \\ &a = q, G \end{split}$$

JSA

ENERGY Office of Science

GPDs => Compton Form Factors (CFFs)

$$\operatorname{Re}\mathcal{H}(\xi,t) + i\operatorname{Im}\mathcal{H}(\xi,t) = \sum_{q} e_{q}^{2} \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right] H_{q}(x,\xi,t)$$

$$\operatorname{Re}\mathcal{H}(\xi,t) = \begin{array}{c} \mathcal{C}_{\mathcal{H}}(t) \end{array} \qquad \text{Dispersion relation} \\ + \frac{1}{\pi} \operatorname{P.V.} \int_{0}^{1} \mathrm{d}\xi' \left[\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right] \operatorname{Im}\mathcal{H}(\xi',t)$$

$$C_{\mathcal{H}}(t) \rightarrow D_q(t)$$

From GFF $D_q(t)$ to distribution of forces (pressure)

Fitting the dispersion relation to $Im \mathcal{H}(\xi,t), \, Re \mathcal{H}(\xi,t)$

22 GeV required to cover sufficient range in t for extraction of mechanical properties.

TCS at 10.6 GeV – CLAS12

P. Chatagnon et al., Phys.Rev.Lett. 127 (2021) 26, 262501

In addition to the BSA from the polarized beam, TCS has a forwardbackward asymmetry, which **directly** relates to $\mathbf{Re}\mathcal{H}$ through the interference term with BH.

$$A_{FB}(\theta,\phi) = \frac{d\sigma(\theta,\phi) - d\sigma(180^\circ - \theta, 180^\circ + \phi)}{d\sigma(\theta,\phi) + d\sigma(180^\circ - \theta, 180^\circ + \phi)}$$

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} = A \frac{1 + \cos^2 \theta}{\sin \theta} \left[\cos \phi \, \operatorname{Re} \tilde{M}^{--} - \nu \cdot \sin \phi \, \operatorname{Im} \tilde{M}^{--} \right]$$
$$\tilde{M}^{--} = \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4m_p^2} F_2 \mathcal{E} \right]$$

 \rightarrow First test of universality of GPDs/CFFs.

SJSA

ENERGY Office of Science

TCS is measured at 22 GeV simultaneously with DVCS

Summary

- Hall A/C High luminosity and precision DVCS data in valence quark region.
 - Precision scaling tests
 - High resolution imaging
 - Double the range in Q^2 from 11 GeV, at fixed range in t, x_B .
- Hall B/CLAS12 Cover continuous Q² vs x_B space simultaneously at moderate luminosity
 - CLAS12 provides excellent particle identification
 - Large continuous kinematic coverage in same setting
 - Use longitudinally polarized solid targets with full solid angle coverage
 - Transversely polarized target concept developed (to access GPD \mathcal{E} in Ji's spin sum rule)
- Combining 22 GeV DVCS data with previous 6 and 11 GeV data
 - construct more complete images of the protons valence quark domain
 - determine force, mass, and angular momentum distributions.
- TCS is measured simultaneously, direct access to *D*-term and test of universality

Additional slides for discussion

Desirable CLAS12 upgrades

- Improve tracking resolution in forward detectors with pixel tracking layers
 - Missing particle mass resolution
- Large angle electromagnetic calorimeter for photon and electron detection
 - High t- science (photon detection)
 - 2-photon exchange science (electron detection)
- 0-degree spectrometer with high resolution electron detection
 - Exotic meson spectroscopy

Improving forward tracking & vertexing (concept)

SJSA

CLAS12 + Silicon pixel tracker

Silicon Pixel Tracker cost estimate (CMS phase 2, upgrade)			Y. Gotra			
CLAS24 - Si Pixel	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	total
Radius (mm)	63	83	103	123	143	
Area (mm²)	12,500	21,600	33,300	47,500	64,300	179,200
Pixel 0.01mm ²						
#channels (10 ³)	1,250,000	2,160,000	3,330,000	4,750,000	6,430,000	17,920,000
Cost SF (1 SF = 0.3)						5,376,000+ inflation
		Pixel s	<mark>ize : 100</mark>	<mark>x 100 µ</mark>	lm	

30°

Silicon Pixel Tracker

24GeV target

SISA

U.S. DEPARTMENT OF Office of Science

6

CLAS12 + γ **/**e^{+/-} **detection** at large angles

Jefferson Lab

0-degree energy tagging system (schematic)

