Double Deeply Virtual Compton Scattering at 22 GeV

Eric Voutier, **Alexandre Camsonne**, Zhiwen Zhao Jefferson Laboratory Hall A January 23rd 2023 Jefferson Laboratory Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop

DVCS / Double DVCS $\gamma^* + p \longrightarrow \gamma'(*) + p'$

Guidal and Vanderhaegen : Double deeply virtual Compton scattering off the nucleon (arXiv:hep-ph/0208275v1 30 Aug 2002) Belitsky Radyushkin : Unraveling hadron structure with generalized parton distributions (arXiv:hep-ph/0504030v3 27 Jun 2005)

DDVCS cross section

•VGG model

 Order of $\sim 0.1 \text{ pb} = 10^{-36} \text{ cm}^2$

•About 100 to 1000 smaller than DVCS

•Virtual Beth and Heitler

 Interference term enhanced by BH

 Contributions from mesons small when far from meson mass

Double Deeply Virtual Compton Scattering

Kinematical coverage

- DVCS only probes $\eta = \xi$ line
 - Example with model of GPD H for up quark
- Jlab : Q²>0
- Kinematical range increases with beam energy (larger dilepton mass)
- Dependence in η of GPDs
- Could give access to D term (non η dependent part of GPD)

CLAS12 modifications for $ep \rightarrow e'p'm^+m^- @ 10^{37} cm^{-2} s^{-1}$

- Remove HTCC and install in the region of active volume of HTCC
 - a new Moller cone that extends up to 7°
 - a new PbWO₄ calorimeter that covers 7° to 30° polar angular range with 2π azimuthal coverage.
- Behind the calorimeter, a 30 cm thick tungsten shield covers the whole acceptance of the CLAS12 FD
- GEM tracker in front of the calorimeter for vertexing

CLAS12 FD new configuration

- In this configuration the forward drift chambers are fully protected from electromagnetic and hadronic background
- Calorimeter/shield configuration will play a role of the absorber for the muon detector, i.e. the CLAS12 FD
- The scattered electrons will be detected in the calorimeter
- GEM based tracking detectors will aid reconstruction of vertex parameters (angles and positions) of charged particles.

SoLID JPsi Setup

Counts J/psi setup 60 days at 10³⁷ cm⁻²s⁻¹

Q2:Xbj

Double Deeply Virtual Compton Scattering with SoLID at JLab 12GeV

- DDVCS explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS. The exclusive reaction has small crosssection and thus needs high luminosity and large acceptance.
- The SoLID apparatus completed with muon detectors at forward and large angles and

S. Zhao et al. EPJ A 57 (2021) 240 JLab LOI12-15-005 (M. Boer,A. Camsonne,K. Gnanvo, E. Voutier, Z.W. Zhao et al.)

Iron plate for forward angle muon detector

Jefferson Lab

 $\begin{aligned} \xi' &= \frac{Q^2 - Q'^2 + t/2}{2Q^2/x_{\rm B} - Q^2 - Q'^2 + t} \\ \xi &= \frac{Q^2 + Q'^2}{2Q^2/x_{\rm B} - Q^2 - Q'^2 + t} \end{aligned}$

DDVCS with 11GeV circular polarized beam and LH2 target

Dedicated setup

- Target moved 2m from Jpsi
 position inside and switch to 45
 cm target
- Iron plate from 3rd layer yoke in front and behind calorimeter
- Remove Gas Cerenkov
- Try to reach 10³⁸ cm⁻²s⁻¹
- 30 uA on 15 cm target (typical run in Hall A no beam dump upgrade required)
- Additionnal trackers planes
- Pixellized (MAPS or GEMs or superconducting nanowire)
 planes to reduce combinatorial
- Possible superconducting vertex tracker for vertex cut

Expected accuracy dedicated setup 90 days at 10³⁸ cm⁻²s⁻¹ 120 Q2 100 80 60 40 20 2 0.2 0.25 0.3 0.35 0.4 0.1 0.15 Xbj Dedicated config ays at 10^38 cm^2.s⁻¹ 0.15 0.20<x_{bi}<0.30 0.1 3.6GeV²<Q²<4.4GeV² 0.1 2.0GeV²<Q²<3GeV² 0.4GeV²<-t<0.6GeV² 0.05 0.05 0 -0.05 0.34<x_{bi}<0.44 -0.05 6.1GeV²<Q²<6.9GeV² -0.12.0GeV²<Q'²<3GeV² -0.10.4GeV²<-t<0.6GeV² -0.15-100 -50 50 100 150 200 -200 -150-100-500 50 100 150 200 1/24/2023 -200 -150 0

Higher luminosity J/Psi setup tracking study

Higher luminosity ?

- Current could go up to 80 uA
- Target length up to 1 meter (\sim 1.8 10 39 cm⁻²s⁻¹), typical 40 cm
- Tracker occupancy and photon background
 - Reduce amount of Copper in GEM
 - Micromegas option
 - Build smaller chambers and add more channels
 - Study complement with 2D pad readout
 - Superconducting tracker option
 - Radiation hardened silicon and MAPS
- Calorimetry
 - Study liquid scintillator and cryogenics calorimeter option
 - Superconducting detector to replace PMT (1 ns width pulse to increase rate capability)
- Cerenkov
 - Superconducting detector to replace PMT (1 ns width pulse to increase rate capability)
 - HBD type Cerenkov for Large Angle calorimeter

6. 10³⁸ cm⁻²s⁻¹ at 11 GeV and 3. 10³⁸ cm⁻²s⁻¹ at 22 GeV

Technically doable mostly matter of cost

Kinematical coverage 11 GeV

1/24/2023

Zhiwen Zhao (GRAPE)

Kinematical coverage 11 GeV

18

Kinematical coverage 22 GeV

1/24/2023

Zhiwen Zhao (GRAPE)

Kinematical coverage 22 GeV

22

Zhiwen Zhao (GRAPE)

Want Q2 and Q'2 large enough for factorization

Increased acceptance in ξ and η

25

Quick numbers for J/Psi settings

50 days at 10^37

Cross section about 3 times lower : could run at 10 uA or with 45 cm target

Acceptance better when detecting proton but dominated by low Q2/Q'2

Zhiwen Zhao (GRAPE)

27

Asymmetry for one point

 xbj=0.20, Q2=6 GeV2,Q'2=3GeV^2, -t=0.25 GeV^2 from VGG

Asymmetry

Spectrometre SuperBigBite

Large Dipole 48 in x 48 in

Gem trackers

Hadronic Calorimeter 20 cm x 20 cm x 100 cm

Big Cal

Large Angle Calorimeter

Parameters of SBS

	$\theta_{central}$,	Ω,	D,	Hor. range,	Vert. range,
	degree	msr	meter	degree	degree
Solid angle	3.5	5	9.5	± 1.3	± 3.3
	5.0	12	5.8	± 1.9	± 4.9
	7.5	30	3.2	± 3	± 8
	15	72	1.6	± 4.8	± 12.2
D	30	76	1.5	± 4.9	± 12.5
Resolution:					
Momentum =>	$rac{\sigma_{p}}{P} = 0.0029 + 0.0003 imes p [{ m GeV}]$				
Angular =>	$\sigma_{ heta} = 0.1$	4 +	1.3/p	9 [GeV], m	rad
Momentum					

acceptance => P range from 2-10 , GeV/c

0.5 % momentum resolution at 5 GeV

E12-09-018: SIDIS on polarized ³He @ 12 GeV

Experiment E12-09-018

• Approved by JLab PAC38 (August 2011), 64 days, A- rating

- Spokespersons:
 - G. Cates (UVA)

• E. Cisbani (INFN)

- G. Franklin (CMU)
- A. Puckett (LANL—currently JLab, near future UConn)
- B. Wojtsekhowski (JLab)

• In two-months production run, E12-09-018 will reach ~1000X statistical FOM of E06-010 n, ~100X HERMES p

• Electron arm: BigBite at 30 deg as in E06-010 + A_1^n detector upgrades

• Hadron arm: Super BigBite (SBS) at 14 deg.

• Target: high-luminosity polarized Helium-3

Possible HRS/SBS layout

Experimental setup

1/24/2023 2D Micromegas HCAL

Pion event

Conclusion

- DDVCS phase space much better at 22 GeV especially in Q'2
- Can give skewness dependence of GPDs and access to D term
- SoLID Counting rates roughly a factor of 4 lower compared to 11 GeV (J/Psi 3 uA 15 cm LH2) – reasonable coverage with 11 GeV setups
- Asymmetry size seems reasonable from preliminary study
- SBS DDVCS experiment might be possible at 22 GeV
- Need more studies with optimized detector setup and event generator
- 22 GeV upgrade good timing for a dedicated detector