Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop January 23-25, 2023

QCD energy-momentum tensor and the mechanical properties of hadrons

Peter Schweitzer

University of Connecticut

Outline

- Introduction: Meaning of Energy-Momentum Tensor (EMT) in QCD
- Gravitational Form Factors (GFFs) and the processes to measure them
- D-term form factor D(t) and the "least known" global property of nucleon
- Interpretation, Visualization of Forces, the Mechanical Properties of Hadrons
- Conclusions

supported by NSF grant no. 2111490 and by DOE within framework of the QGT Topical Collaboration

Energy momentum tensor (EMT) in general

coupling to gravitational field

$$\widehat{T}_{\mu\nu}(x) = \frac{2}{\sqrt{-g}} \frac{\delta S_{\text{grav}}}{\delta g^{\mu\nu}(x)}$$

• EMT conservation:

in classical and quantum case: $\partial^{\mu}\hat{T}_{\mu
u}=0$

Poincaré group generators:

$$\hat{P}^{\mu} = \int d^{3}x \, \hat{T}^{0\mu}$$
, $\hat{M}^{\kappa\nu} = \int d^{3}x \, (x^{\kappa} \hat{T}^{0\nu} - x^{\nu} \hat{T}^{0\kappa})$,

algebra: $[\hat{P}^{\mu}, \hat{P}^{\nu}] = 0$, $[\hat{M}^{\mu\nu}, \hat{P}^{\kappa}] = i(g^{\mu\kappa}\hat{P}^{\nu} - g^{\nu\kappa}\hat{P}^{\mu})$, $[\hat{M}^{\mu\nu}, \hat{M}^{\kappa\sigma}] = i(g^{\mu\kappa}\hat{M}^{\nu\sigma} - g^{\nu\kappa}\hat{M}^{\mu\sigma} - g^{\mu\sigma}\hat{M}^{\nu\kappa} + g^{\nu\sigma}\hat{M}^{\mu\kappa})$

• Casimir operators:

 $\hat{P}^{\mu}\hat{P}_{\mu} \to m^2$, $\hat{W}^{\mu}\hat{W}_{\mu} \to m^2 J(J+1)$ where $\hat{W}^{\kappa} = -\frac{1}{2}\varepsilon^{\kappa\mu\nu\sigma}\hat{M}_{\mu\nu}\hat{P}_{\sigma}$

classify particles:

mass & spin

Energy momentum tensor (EMT) in QCD

•
$$\widehat{T}_{\mu\nu} = \sum_{q} T^{q}_{\mu\nu} + \widehat{T}^{g}_{\mu\nu}$$

quark, gluon $\hat{T}^q_{\mu\nu}$, $\hat{T}^g_{\mu\nu}$ each gauge-invariant, but not conserved separately

$$T_q^{\mu\nu} = \frac{1}{4}\overline{\psi}_q \left(-i\overleftarrow{\mathcal{D}}^{\mu}\gamma^{\nu} - i\overleftarrow{\mathcal{D}}^{\nu}\gamma^{\mu} + i\overrightarrow{\mathcal{D}}^{\mu}\gamma^{\nu} + i\overrightarrow{\mathcal{D}}^{\nu}\gamma^{\mu} \right) \psi_q - g^{\mu\nu}\overline{\psi}_q \left(-\frac{i}{2}\overleftarrow{\mathcal{D}} + \frac{i}{2}\overrightarrow{\mathcal{D}} - m_q \right) \psi_q$$

 $T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\mu\nu} + \frac{1}{4} g^{\mu\nu} F^{a,\kappa\eta} F^{a,\kappa\eta}$

• classical Lagrangian symmetric under scale transformations for $m_q
ightarrow 0$

$$\hookrightarrow j^{\mu} = x_{\nu} \hat{T}^{\mu\nu}$$
 is conserved $\partial_{\mu} j^{\mu} = \hat{T}^{\mu}_{\mu} = \sum_{q} m_{q} \bar{\psi}_{q} \psi_{q}$ when $m_{q} \to 0$

quantum corrections
 break conformal symmetry
 in QED, QCD → trace anomaly

$$\widehat{T}^{\mu}_{\mu} \equiv \frac{\beta(g)}{2g} F^{a,\mu\nu} F^{a,\mu\nu} + (1+\gamma_m) \sum_{q} m_q \overline{\psi}_q \psi_q$$

S.L.Adler, J.C.Collins and A.Duncan, PRD 15, 1712 (1977).
N.K.Nielsen, NPB 120, 212 (1977).
J.C.Collins, A.Duncan and S.D.Joglekar, PRD 16, 438 (1977).

Definition Gravitational Form Factors (GFFs) for nucleon

in the $A - B - \bar{c} - D$ notation

$$\begin{split} \langle p' | \hat{\boldsymbol{T}}_{\boldsymbol{\mu}\boldsymbol{\nu}}^{a} | p \rangle &= \bar{u}(p') \left[\begin{array}{c} \boldsymbol{A}^{a}(t,\boldsymbol{\mu}^{2}) \, \frac{\gamma_{\mu}P_{\nu} + \gamma_{\nu}P_{\mu}}{2} \\ &+ \boldsymbol{B}^{a}(t,\boldsymbol{\mu}^{2}) \, \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{4M} + \bar{\boldsymbol{c}}^{a}(t,\boldsymbol{\mu}^{2})g_{\mu\nu} \\ &+ \boldsymbol{D}^{a}(t,\boldsymbol{\mu}^{2}) \, \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{4M} \right] u(p) \end{split}$$

EMT conservation: $A(t) = \sum_{a} A^{a}(t, \mu^{2}), B(t), D(t)$ scale invariant, $\sum_{a} \overline{c}^{a}(t, \mu^{2}) = 0$ constraints: **mass** $\Leftrightarrow A(0) = 1 \Leftrightarrow$ quarks + gluons carry 100% of nucleon momentum

spin \Leftrightarrow $B(0) = 0 \Leftrightarrow$ total anomalous gravitomagnetic moment vanishes *

D-term \Leftrightarrow $D(0) \equiv D \rightarrow$ unconstrained! Least known global property!

$$2P = (p' + p)$$

$$\Delta = (p' - p)$$

$$t = \Delta^2$$
notation: $A^q(t) + B^q(t) = 2J^q(t)$

$$D^q(t) = \frac{4}{5}d_1^q(t) = \frac{1}{4}C^q(t) \text{ or } C^q(t)$$

$$A^q(t) = M_2^q(t)$$

* equivalent to: total nucleon spin $J^q + J^g = \frac{1}{2}$ is due to quarks + gluons (via Gordon identity)

Brief history of GFFs (many notations!)

- 1962 Kobzarev & Okun: $f_1(t)$, $f_2(t)$, $f_3(t)$, $f_4(t)$, $f_5(t)$, $f_6(t)$ (including parity violation)
- 1966 Pagels: spin- $\frac{1}{2} \theta_1(t)$, $\theta_2(t)$, $\theta_3(t)$
- 1980 Novikov, Shifman, Voloshin, Zakharov $\psi' \rightarrow J/\psi \ \pi\pi \rightsquigarrow$ triggered modest interest
- 1990 Donoghue, Gasser, Leutwyler "light Higgs" $\rightarrow \pi\pi \rightsquigarrow$ some more modest interest
- 1995 Ji: mass decomposition ~> a little more interest (at that time, now much activity!)
- 1997 Ji: nucleon spin decomposition & GPDs $A^q(t)$, $B^q(t)$, $\underline{C}^q(t)$, $\overline{c}^a(t) \rightsquigarrow$ boom!
- 1999 Polyakov, Weiss: ''double distributions'' and D-term \rightsquigarrow $D^a(t)$
- models: 1997 Ji et al (bag), 2007 Goeke et al (chiral quark soliton), ...
- lattice: 2002 Gadiyak et al, 2003 Hägler et al, ... 2019 Shanahan, Detmold
- 2019 Lorcé, Moutarde, Trawiński: elastic frames, 2D interpretation
- 2021 Freese, Miller: more on forces in hadrons on the light front
- 2021 Panteleeva, Polyakov: Abel transforms between 3D \leftrightarrow 2D
- far from complete, tip of iceberg

 \rightarrow talks by Simonetta Liuti, Kyugseon Joo, Volker Burkert

Applications of GFFs

- proton mass decomposition $\rightsquigarrow A^a(0), \overline{c}^a(0) \rightsquigarrow$ entire workshops Ji 1995, Hatta et al 2018, Tanaka 2019, Metz et al, Rodini et al 2020, Lorcé et al 2021, Ji 2021
- proton spin decomposition $\rightsquigarrow J^a(t) \rightsquigarrow$ even more workshops Ji 1996, many works, Leader & Lorcé 2014, many works, Ji, Yuan, Zhao 2021
- D-term → D(0) → "last unknown global property" of proton slowly becoming "least known" global property → this talk
- mechanical properties of the nucleon \rightsquigarrow D(t)very first insights \rightsquigarrow this talk

What means "*D*-term is least known global property"?

 $|N\rangle = \text{strong-interaction particle}$. Use other forces to probe it! Simplest observables:

	em:	$\partial_{\mu}J^{\mu}_{\mathrm{em}}=0$	$\langle N' J^{\mu}_{ m em} N angle$	\longrightarrow	$G_E(t)$, $G_M(t)$	\longrightarrow	Q, μ,	
	weak:	PCAC	$\langle N' J^{\mu}_{ m weak} N angle$	\rightarrow	$G_A(t)$, $G_P(t)$	\longrightarrow	g_A , g_p ,	
_	gravity:	$\partial_{\mu}T^{\mu\nu}_{\rm grav}=0$	$\langle N' T^{\mu u}_{ m grav} N angle$	\longrightarrow	A(t), B(t), D(t)	\rightarrow	M, J, D,	
global properties: $Q_p = 1.602176487(40) \times 10^{-19} C$ $\mu_p = 2.792847356(23)\mu_N$ $g_A = 1.2694(28)$ $g_P = 8.06(0.55)$ $M_p = 938.272013(23) \text{ MeV}$ $J_p = \frac{1}{2}$ D = ? first insights on D of π^0 and proton Kumano, Song, Teryaev, PRD97, 014020 (2018) Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018)								

Selected theory results on the *D*-term

- free spin- $\frac{1}{2}$ theory D = 0 Donoghue et al (2002), Hudson, PS (2018)
- Goldstone bosons chiral symmetry breaking D = -1Novikov, Shifman; Voloshin, Zakharov (1980); Polyakov, Weiss (1999)
- nuclei (liquid drop model, Walecka model) $D \propto A^{7/3} \rightarrow \text{DVCS}$ with nuclei! Polyakov (2002), Guzey, Siddikov (2006); Liuti, Taneja (2005)
- Q-balls N^{th} excited Q-ball state: $M \propto N^3$ but $D \propto N^8$ Mai, PS (2012)
- nucleon, bag model D = -1.15 < 0 Ji, Melnitchouk, Song (1997)
- chiral quark soliton Goeke et al, PRD75 (2007) (see next slides)
- χPT Belitsky, Ji (2002), Alharazin, Djukanovic, Gegelia, Polyakov PRD102 (2020) 7, 076023
- **lattice QCD** Göckeler et al, PRL92 (2004), ... Shanahan, Detmold (2019)
- dispersion relations Pasquini, Polyakov, Vanderhaeghen (2014)
- excited states in bag model Neubelt et al (2019)
- review Polyakov and PS, (2018)

of all properties, *D*-term most sensitive details of interaction \Rightarrow dynamics!

Experimental results on GFFs

- determining $A^{a}(t)$, $B^{a}(t)$ of nucleon from data difficult \rightsquigarrow not possible to "deconvolute" CFF = Re $\mathcal{H}(\xi, t) + i \operatorname{Im}\mathcal{H}(\xi, t) = \sum_{q} e_{q}^{2} \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H_{q}(x, \xi, t)$ to get GPDs
- for $D^a(t)$ situation somewhat better \rightsquigarrow fixed-t dispersion relation $\operatorname{Re}\mathcal{H}(\xi,t) = \Delta(t,\mu^2) + \frac{1}{\pi}\operatorname{P.V.} \int_0^1 \mathrm{d}\xi' \left[\frac{1}{\xi-\xi'} - \frac{1}{\xi+\xi'}\right] \operatorname{Im}\mathcal{H}(\xi',t)$ and $\Delta(t,\mu^2) \xrightarrow{\mu^2 \to \infty} 5 \sum_q e_q^2 D^q(t,\mu^2) + \dots$ Anikin & Teryaev 2008, Diehl & Ivanov 2007
- proton $D^q(t)$ from JLab DVCS data Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018) assume corrections small (NLO, $\mathcal{E}(\xi, t), d_3^q, d_5^q, \ldots$) $\mathcal{Im}\mathcal{H} \rightsquigarrow BSA$ Girod et al PRL 100 (2008) 162002 $\mathcal{Re}\mathcal{H} \rightsquigarrow \sigma_{unp}$ Jo et al PRL 115 (2015) 212003

fit: $\Delta(0, 1.5 \text{ GeV}^2) = -2.27 \pm 0.16 \pm 0.36$ $M^2 = 1.02 \pm 0.13 \pm 0.21 \text{ GeV}^2$ $\alpha = 2.76 \pm 0.23 \pm 0.48$ at $\langle Q^2 \rangle = 1.5 \text{ GeV}^2$ ∆(t) $\Delta(t) = \Delta(0)(1 - t/M^2)^{\alpha}$ χQSM -0.8 **Dispersive analysis** -1.2 Data Fit -1.4 -1.6 -1.8 -2 Systematic error band -2.2 0.4 0.45 0.2 0.25 0.3 0.15 0.35 -t (GeV²)

 $D_{u+d}(0) = -1.63 \pm 0.11 \pm 0.26$ + syst using large N_c

cf. chiral quark soliton model (χ QSM) Goeke et al 2008, dispersion relations Pasquini et al 2014 lattice (gluon Shanahan, Detmold 2019); fits: KM 2015, Kumerički Nature 2019 \rightsquigarrow JLab 22 GeV • *D*-term of π^0

EMT form factors of unstable particles generalized distribution amplitudes (analyt. cont. of GPDs) in $\gamma\gamma^* \rightarrow \pi^0\pi^0$ in e^+e^- Belle, PRD 93, 032003 (2016) $D^Q_{\pi^0} \approx -0.7$ at $\langle Q^2 \rangle = 16.6 \text{ GeV}^2$ Kumano, Song, Teryaev, PRD97, 014020 (2018)

compatible with soft pion theorem: total $D_{\pi^0} = -1$ for $m_\pi o 0$

• gluon GFFs of proton

 \rightsquigarrow threshold J/ψ photo-production Kharzeev 1995, 2021; Guo et al 2021

factorization for heavy vector mesons Ivanov et al, 2004,

does it apply at threshold? Sun, Tong, Yuan 2021

 \rightarrow Monday talks by Kiminad Mamo and Lubomir Pentchev

• $D^{s}(t)$ of proton from $ep \rightarrow e'p'\phi$ at threshold effective approach (not colinear factorization) Hatta and Strikman 2021 \rightarrow talk by Mark Strikman, Wednesday(?)

Interpretation of GFFs

• static 3D EMT in Breit frame $\Delta^{\mu} = (0, \vec{\Delta})$ $T_{\mu\nu}(\vec{r}) = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{2E(2\pi)^{3}} e^{-i\vec{\Delta}\cdot\vec{r}} \langle P'|\hat{T}_{\mu\nu}|P\rangle$ M.V.Polyakov, PLB 555 (2003) 57

 $\int d^3r T_{00}(\vec{r}) = M \qquad \text{known}$

$$\int d^3 r \, \varepsilon^{ijk} \, s_i \, r_j \, T_{0k}(\vec{r}, \, \vec{s}) = \frac{1}{2} \qquad \text{known}$$

$$-\frac{2}{5}M\int d^3r \left(r^ir^j-\frac{r^2}{3}\delta^{ij}\right)T_{ij}(\vec{r})\equiv D$$
 new!

with:
$$T_{ij}(\vec{r}\,) = m{s}m{r}m{r}m{r}m{r}_i r_j}{r^2} - rac{1}{3}\,\delta_{ij}m{r} + m{p}m{r}m{r}m{r}m{s}_{ij}$$
 stress tensor

 $egin{aligned} s(r) & \text{related to distribution of shear forces} \\ p(r) & \text{distribution of pressure inside hadron} \end{aligned} \begin{aligned} & \rightarrow & \text{``mechanical properties''} \\ \end{aligned}$

• relation to stability: EMT conservation $\Leftrightarrow \partial^{\mu} \hat{T}_{\mu\nu} = 0 \Leftrightarrow \nabla^{i} T_{ij}(\vec{r}) = 0$

$$\hookrightarrow$$
 necessary condition for stability $\int_0^\infty dr \ r^2 p(r) = 0$ (von Laue, 1911)

 $D = -\frac{16\pi}{15} M \int_0^\infty dr \ r^4 s(r) = 4\pi M \int_0^\infty dr \ r^4 p(r) \rightarrow \text{ balance of internal forces}$

• 2D interpretation Lorcé et al (2019); Freese, Miller (2021)

Abel transformations Panteleeva, Polyakov (2021)

mechanical radius

- $T_{ij}(\vec{r}) = s(r) \left(\frac{r_i r_j}{r^2} \frac{1}{3} \delta_{ij} \right) + p(r) \delta_{ij} = \text{symmetric } 3 \times 3 \text{ matrix } \rightarrow \text{ diagonalize:}$ $\frac{2}{3} s(r) + p(r) = \text{ normal force (eigenvector } \vec{e}_r) \implies \text{positive definite!}$ $-\frac{1}{3} s(r) + p(r) = \text{ tangential force } (\vec{e}_{\theta}, \vec{e}_{\phi}, \text{ degenerate for spin 0 and } \frac{1}{2})$
- mechanical stability ⇔ normal force directed towards outside

$$\Leftrightarrow T^{ij} e_r^j dA = \underbrace{\left[\frac{2}{3}s(r) + p(r)\right]}_{>0} e_r^i dA \quad \Rightarrow \quad D < 0 \quad \text{Perevalova et al (2016)}$$

•
$$\langle r^2 \rangle_{\text{mech}} = \frac{\int d^3 r \ r^2 [\frac{2}{3} s(r) + p(r)]}{\int d^3 r \ [\frac{2}{3} s(r) + p(r)]} = \frac{6D(0)}{\int_{-\infty}^0 dt \ D(t)}$$
 vs $\langle r_{\text{ch}}^2 \rangle = \frac{6G'_{E,p}(0)}{G_{E,p}(0)}$ "anti-derivative"

- proton: $\langle r^2
 angle_{
 m mech} pprox 0.75 \langle r_{
 m ch}^2
 angle$ from chiral quark soliton model, Goeke et al 2007 (ightarrow V. Burkert)
- neutron: same $\langle r^2 \rangle_{mech}$ as proton while $\langle r_{ch}^2 \rangle_{neut} = -(0.11 \text{ fm})^2$ insightful, but not particle size!
- in chiral limit $\langle r^2 \rangle_{mech}$ finite (!) vs $\langle r_{ch}^2 \rangle$ divergent

 \Rightarrow mechanical radius better concept for particle size than electric charge radius

2D vs 3D interpretation

• **3D** density not exact, "relativistic corrections" for $r \lesssim \lambda_{\text{Compt}} = \frac{\hbar}{mc}$ 2D densities exact partonic probability densities

known since earliest days:

- Yennie, Levy, Ravenhall, Rev. Mod. Phys. 29 (1957) 144
- Sachs, Physical Review 126 (1962) 2256
- Belitsky, Radyushkin, Phys. Rept. 418, 1 (2005), Sec. 2.2.2
- X.-D. Ji, PLB254 (1991) 456 (Skyrme model, not a big effect)
- G. Miller, PRC80 (2009) 045210 (toy model, very dramatic effect)
- Lorcé, PRL 125 (2020) 232002 quasi-probabilistic phase-space average á la Wigner
- Jaffe, arXiv:2010.15887 (not possible to measure spatial dependence of nucleon matrix elements)
- Freese, Miller, 2102.01683 (expectation value of a local operator within spatially-localized state)
- Epelbaum, Gegelia, Lange, Meißner, Polyakov, arXiv:2201.02565
- **2D** densities = partonic probability densities (unitarity)

must (and better be) exact! \rightarrow M. Burkardt (2000) apply to any particle (including the light pion)

3D densities = mechanical response functions

correlation functions (\neq probabilities!)

if corrections "reasonably small" \rightarrow we do not need to worry

relative correction for $\langle r_E^2 \rangle = \int d^3r r^2 T_{00}(r)/m$ is $\delta_{\rm rel} = 1/(2m^2R^2)$ Hudson, PS PRD (2007)

numerically pion, kaon, nucleon, deuterium,
$$4He^{-3}$$
, $12C^{-3}$, $20Ne^{-3}$, $56Fe^{-3}$, $132Xe^{-3}$, $208Pb^{-3}$, $132Xe^{-3}$, $208Pb^{-3}$, $132Xe^{-3}$, $208Pb^{-3}$, $208P$

- for nucleon 3D description strictly justified in large- N_c limit S. Coleman: "1/ N_c only small parameter in QCD at all energies" (in Aspects of Symmetry)
- important: nucleon mass \rightarrow heavy, quark mass \rightarrow anything

illustration in chiral quark-soliton model

• $\mathcal{L}_{\text{eff}} = \overline{\Psi} \left(i \not \partial - M U^{\gamma_5} \right) \Psi$, $U = \exp(i\tau^a \pi^a / f_{\pi})$ Diakonov, Petrov, Pobylitsa, NPB 306, 809 (1988)

solve in large- N_c limit, where $U(x) \rightarrow U(\vec{x})$ static mean field Witten NPB 223 (1983) 433

Hamiltonian $H = -i\gamma^0\gamma^i\nabla^i + \gamma^0 M U^{\gamma_5}$ with $H\Phi_n(\vec{x}) = E_n\Phi_n(\vec{x})$ spectrum discrete level and continua

$$\langle N'|\hat{T}_{\mu
u}|N
angle ~=~~ar{u}(ec{p}')igg[rac{P_{\mu}P_{
u}}{M_N}A(t)+rac{i(P_{\mu}\sigma_{
u
ho}+P_{
u}\sigma_{\mu
ho})\Delta^{
ho}}{2M_N}J(t)+rac{\Delta_{\mu}\Delta_{
u}-g_{\mu
u}\Delta^2}{4M_N}D(t)igg]u(ec{p})$$

$$= \lim_{T o \infty} rac{\int \mathcal{D} \Psi \; \mathcal{D} \overline{\Psi} \; \mathcal{D} U \; J_N(rac{T}{2}) \; \hat{T}_{\mu
u} \; J_N^\dagger(-rac{T}{2}) e^{-\int d^4 x_E \mathcal{L}_{ ext{eff}}}}{\int \mathcal{D} \Psi \; \mathcal{D} \overline{\Psi} \; \mathcal{D} U \; J_N(rac{T}{2}) \; J_N^\dagger(-rac{T}{2}) e^{-\int d^4 x_E \mathcal{L}_{ ext{eff}}}}$$

$$= 2 M_N \int d^3x \; e^{i(ec{p}'-ec{p})ec{x}} \, N_c \; \sum_n \overline{\Phi}_n(ec{x}) (i \gamma^\mu \partial^
u + i \gamma^
u \partial^\mu) \Phi_n(ec{x}) \; + \; \mathcal{O}(1/N_c)$$

 $= 2M_N \int d^3r \; e^{iec{\Delta}\,ec{r}} \; T_{\mu
u}(ec{r}) \; + \; \mathcal{O}(1/N_c^2)$ Goeke et al, PRD75 (2007) 094021

recall
$$2J(t) = A(t) + B(t), d_1(t) = \frac{4}{5}D(t)$$

visualization of forces

• liquid drop model for large nuclei

 $p(r) = p_0 \Theta(R_A - r) - \frac{1}{3}p_0 R_A \,\delta(r - R_A), \ s(r) = \gamma \,\delta(r - R_A)$ $R_A = R_0 A^{1/3}, \ m_A = m_0 A, \ \text{surface tension} \ \gamma = \frac{1}{2}p_0 R_A$ D-term $D = -\frac{4\pi}{3} m_A \gamma \ R_A^4 \approx -0.2 \ A^{7/3}$ M.V.Polyakov PLB555 (2003) Guzey, Siddikov (2006); Liuti, Taneja (2005)

r in fm

 first visualization based on data → talk by Volker Burkert role of gluons → lattice studies → Shanahan, Detmold 2019 many model interesting studies; intersting include Coulomb forces, *D*-term divergent Kubis & Meissner (2000), Donoghue et al (2002), Varma & PS (2020), Metz et al (2021)

Conclusions

- **EMT** crucial operator \rightsquigarrow gravitational form factors (GFFs) important applications: mass & spin decompositions + more!
- measurability A(t) and B(t) difficult (cannot "invert CFF") D(t) from fixed-t dispersion relation more directly and less model-dependently
- crucial: scale dependence + wide range of $\xi \rightarrow$ measurement at different energies EIC good energies but ξ -coverage? Crucial compare JLab 6, JLab 12, JLab 22
- D-term least known global property, for fermions generated dynamically negative: Goldstone bosons, models, dispersion relations, lattice QCD, experiment
- **3D** interpretation strictly correct in large N_c and intuitive (pressure is 3D!) **2D** formalism can be given a meaning, mathematically equivalent (Abel transform)
- mechanical stability \rightarrow normal force $\frac{2}{3}s(r) + p(r)$ positive definite more than analogy & fully consistent
- visualization of internal forces appealing and insightful application
- mechanical radius $\langle r_p^2 \rangle_{\text{mech}} = \langle r_n^2 \rangle_{\text{mech}}$ smaller than $\langle r_p^2 \rangle_{\rm el}$ in physical situation, finite in chiral limit

Nank you. • mechanical properties \rightsquigarrow many fascinating lessons to learn about hadrons

Support slides

D-term in theory

- free spin-0 particle D = -1Pagels 1966; Hudson, PS 2017
- free spin $\frac{1}{2}$ particle D = 0Donoghue et al, (2002), Hudson, PS PRD97 (2018) 056003
- Goldstone bosons chiral symmetry breaking D = -1Novikov, Shifman; Voloshin, Zakharov (1980); Polyakov, Weiss (1999)

$$D_{\pi} = -1 + 16 a \frac{m_{\pi}^2}{F^2} + \frac{m_{\pi}^2}{F^2} I_{\pi} - \frac{m_{\pi}^2}{3F^2} I_{\eta} + \mathcal{O}(E^4)$$

$$D_{K} = -1 + 16 a \frac{m_{K}^2}{F^2} + \frac{2m_{K}^2}{3F^2} I_{\eta} + \mathcal{O}(E^4)$$

$$D_{\eta} = -1 + 16 a \frac{m_{\eta}^2}{F^2} - \frac{m_{\pi}^2}{F^2} I_{\pi} + \frac{8m_{K}^2}{3F^2} I_{K} + \frac{4m_{\eta}^2 - m_{\pi}^2}{3F^2} I_{\eta} + \mathcal{O}(E^4)$$

$$\begin{aligned} a &= L_{11}(\mu) - L_{13}(\mu) \\ I_i &= \frac{1}{48\pi^2} (\log \frac{\mu^2}{m_i^2} - 1) \\ i &= \pi, \ K, \ \eta. \end{aligned} \qquad \begin{aligned} D_\pi &= -0.97 \pm 0.01 \\ D_K &= -0.77 \pm 0.15 \\ D_\eta &= -0.69 \pm 0.19 \\ \text{Donoghue, Leutwyler (1991)} \\ \text{estimates: Hudson, PS (2017)} \end{aligned}$$

• nuclei (liquid drop model, Walecka model) $D \approx -0.2 \times A^{7/3} \rightarrow \text{DVCS}$ with nuclei! Polyakov (2002), Guzey, Siddikov (2006); Liuti, Taneja (2005) $D \approx -0.2 \times A^{7/3} \rightarrow \text{DVCS}$ with nuclei! $1^2\text{C}: D = -6.2$ $1^6\text{O}: D = -115$ $4^0\text{Ca}: D = -1220$

- 90 Zr : D = -6600 208 Pb : D = -39000
- Q-balls N^{th} excited Q-ball state: mass $M \propto N^3$ but $D \propto N^8$ Mai, PS PRD86, 096002 (2012)
- nucleon, bag model D = -1.15 < 0Ji, Melnitchouk, Song (1997)
- chiral quark soliton Goeke et al, PRD75 (2007) $d_1(m_{\pi}) = \overset{\circ}{d_1} + \frac{5 k g_A^2 M}{64 \pi f_{\pi}^2} m_{\pi} + \dots$ $\overset{\circ}{d_1}'(0) = -\frac{k g_A^2 M}{32 \pi f_{\pi}^2 m_{\pi}} + \dots k = \begin{cases} 1, & N_c \text{ finite} \\ 3, & N_c \to \infty \end{cases}$

 $d_{1}(t) = \frac{5}{4} D(t)$ CQSM CQSM CQSM $m_{\pi} = 0$ $m_{\pi} = 0$ $m_{\pi} = 140 \, MeV$ $M_{\pi} = 140 \, MeV$

• χPT

Belitsky, Ji (2002), Diehl et al (2006), Alharazin, Djukanovic, Gegelia, Polyakov PRD102 (2020) 7, 076023

• non-relativistic limit $D = -N_c^2 \frac{4\pi^2-15}{45} = -4.89$ Neubelt et al (2019) (in bag)

• dispersion relations $d_1^Q(t) = \frac{5}{4}D^Q(t)$ Pasquini, Polyakov, Vanderhaeghen (2014) pion PDFs are input, scale $\mu^2 = 4 \text{ GeV}^2$

excitated stats

in bag model Neubelt et al (2019) M over 1 order of magnitude D over 3 orders of magnitude

of all properties, *D*-term most sensitive (parameters, excitations)

\Rightarrow dynamics!

keep in mind: free spin $\frac{1}{2}$ theory $\rightarrow D = 0$;

i.e. D-term of nucleon due to dynamics!

• form factor of $\hat{T}^{\mu}_{\mu} = \frac{\beta(g)}{2g} F^2 + \mathcal{O}(m_q)$ from J/ψ photoproduction at threshold Hatta 2019, Kharzeev 2021

$$\sqrt{\langle r_{\text{trace}}^2 \rangle} = 0.55 \pm 0.03 \text{ fm} < \text{charge radius} \sim 0.84 \text{ fm}$$

 $\sqrt{\langle r_{\text{traceless}}^2 \rangle_g} \sim (0.3-0.35) \text{ fm of } A^g(t) = A^g(0) + \frac{1}{6}t \langle r_{\text{traceless}}^2 \rangle_g + \dots \text{ from QCD sum rules}$
Braun, Górnicki, Mankiewicz, Schäfer, PLB 302, 291 (1993)

explanation:

 $\langle r_{\text{trace}}^2 \rangle_g$ due to one-instanton contributions, vs $\langle r_{\text{traceless}}^2 \rangle_g$ from instanton-anti-instanton i.e. suppressed by instanton packing fraction Diakonov, Polyakov, Weiss (1996)

relation to other EMT form factors:

form factor $\langle p' | \hat{T}^{\mu}{}_{\mu} | p \rangle = \bar{u}(p')u(p) F_{tr}(t)$ where $F_{tr}(t) = 1 + \frac{1}{6}t \langle r_{tr}^2 \rangle + \mathcal{O}(t^2)$

$$F_{\rm tr}(t) = A(t) + \frac{t}{4M^2} B(t) - \frac{3t}{4M^2} D(t) = 1 + t \left(\frac{dA(0)}{dt} - \frac{3D}{4M^2}\right) + \mathcal{O}(t^2)$$

 $\langle r_{\rm trace}^2 \rangle = 6 A'(0) - \frac{9D}{2M^2}$ "mass radius"

Skyrme model nucleon, Δ vs large- N_c artifacts Witten 1979

• in large N_c baryons = rotational excitations of soliton with $S = I = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$

 \Rightarrow particles with positive D unphysical!!!

$$Q\text{-balls } \mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi^*) (\partial^{\mu} \Phi) - V, \ V = A (\Phi^* \Phi) - B (\Phi^* \Phi)^2 + C (\Phi^* \Phi)^3$$

global U(1) symmetry, solution $\Phi(t, \vec{r}) = e^{i\omega t} \phi(r)$

• ground state properties for large Q-ball

• excitations: N = 0 ground state, N = 1 first excited state, etc Volkov, Wohnert 2002; Mai, PS 2012 charge density exhibits N shells, p(r) exhibits (2N + 1) zeros

bag model Neubelt, Sampino, Hudson, Tezgin, PS, PRD101 (2020) 034013

- free quarks + boundary condition, formulated in large- N_c
- $T^{\mu\nu}(r) = T^{\mu\nu}_{\text{quarks}}(r) + T^{\mu\nu}_{\text{bag}}(r)$

 $T^{\mu\nu}_{\text{bag}}(r) = B \Theta(R-r) g^{\mu\nu}$ binding effect ("mimics gluons" Jaffe & Ji 1991)

• all densities defined with Θ -functions, assume non-zero values at r = R

- only exception: the normal force = $\frac{2}{3}s(r) + p(r) > 0$ for r < R, becomes exactly zero at r = R
- this is how one determines the radius of a neutron star: solve Tolman-Oppenheimer-Volkoff equations with an "equation of state" where "radial pressure" $\frac{2}{3}s(r) + p(r)$ turns negative, define "end of the system"
- excitated states different pattern than Q-balls: p(r) has one node (here 3163th excited state) but $D \sim \text{const} \times M^{8/3}$ bag & Q-balls deeper reason?

D-term in the presence of long-range forces

Simple relativistic classical model of a finite size particle Białynicki-Birula, Phys. Lett. A 182 (1993) 346

non-interacting "dust particles" within R described by phase-space distribution $\Gamma(\vec{r}, \vec{p}, t)$ feel 3 forces:

- massive scalar field force (attractive, mass m_S , short range $\sim \frac{1}{r} e^{-m_s r}$)
- massive vector field force (repulsive, mass $m_V > m_S$, even shorter range $\sim ~ rac{1}{r} \, e^{-m_V r}$)
- massless vector field force (repulsive, Coulomb force, infinite range $\sim \frac{1}{r}$)

$$\begin{bmatrix} (m - g_S \phi)(\partial_t + \vec{v} \cdot \vec{\nabla}_r) + m \vec{F} \cdot \vec{\nabla}_p \end{bmatrix} \Gamma(\vec{r}, \vec{p}, t) = 0,$$

$$\partial_{\alpha} G^{\alpha\beta} + m_V^2 V^{\beta} = g_V j^{\beta},$$

$$(\Box + m_S^2) \phi = g_S \rho,$$

$$\partial_{\alpha} F^{\alpha\beta} = e j^{\beta},$$

with $j^{\alpha}(\vec{r},t) = \int \frac{d^3p}{E_p} p^{\alpha} \Gamma(\vec{r},\vec{p},t), \quad \rho(\vec{r},t) = \int \frac{d^3p}{E_p} m \Gamma(\vec{r},\vec{p},t).$ relativistically invariant.

parameters from model QHD-I of the mean field theory of nuclear matter Serot, Walecka (1986)

$$m_S = 550 \text{ MeV}, \quad m_V = 783 \text{ MeV}, \quad \frac{g_S^2}{4\pi\hbar c} = 7.29, \quad \frac{g_V^2}{4\pi\hbar c} = 10.84, \quad \alpha = \frac{e^2}{4\pi\hbar c} = \frac{1}{137},$$

Can be solved analytically, describes particle of charge radius 0.71 fm ("proton") Białynicki-Birula (1993) We use it to investigate in consistent framework effects of long-range forces Varma, PS (2020)

• usual features in inner region $r < 2 \, {\rm fm}$

strong forces (scalar and vector fields ϕ and V^{μ}) make large contributions about $10 \times$ smaller than in chiral quark soliton ("residual nuclear forces") Coulomb field minuscule contribution, hardly visible

p(r) exhibits node at r = 0.788 fm, balance of forces:

$$\int dr \ r^2 p_i(r) = \begin{cases} -10.916 \,\text{MeV} & \text{for} \quad i = \text{scalar}, \\ +10.891 \,\text{MeV} & \text{for} \quad i = \text{vector}, \\ + \ 0.025 \,\text{MeV} & \text{for} \quad i = \text{Coulomb}. \end{cases}$$

So far, same picture as in systems with short-range forces. But we are looking at the region of r < 2 fm. Let's look more closely at larger $r \dots$

• unusual features in outer region $r>2\,{
m fm}$

• at large $r > 2 \, \text{fm}$, Coulomb contribution takes over! Co

Consequences!!

- shear forces s(r) exhibit a node (in short-range systems s(r) > 0) p(r) has 2nd node at 2.4 fm (short-range systems one node) normal force turns negative (in short range systems > 0)
- model is still mechanically stable: dust particles within $R = 1.05 \,\text{fm}$ where features "as usual"
- *D*-term is affected by that ... (most sensitive to dynamics!!)

• consequences for *D*-term

$$D(t) = (\text{regular strong part}) + \frac{\alpha}{\pi} \left(-\frac{11}{18} + \frac{\pi^2 M}{4\sqrt{-t}} + \frac{2}{3} \log \frac{(-t)}{M^2} \right) \qquad \text{QED part model-independent!}$$

• from QED diagrams Donoghue, Holstein, Garbrecht, Konstandin,

- long-range tail of densities \Leftrightarrow small-t behavior of D(t) due to exchange of massless photons (also the "classical Coulomb potential")
- model independent features, seen in Kubis, Meissner, Nucl. Phys. A 671, 332 (2000) Metz, Pasquini, Rodini, PLB 820, 136501 (2021) X. Ji and Y. Liu, arXiv:2110.14781 [hep-ph]

X. Ji and Y. Liu, arXiv:2110.14781 [nep-ph]
Deeper reason:

$$T^{ij}(r) = -E^i E^j + \frac{1}{2} \delta^{ij} \vec{E}^2 = -\sigma^{ij}$$

 $(\sigma^{ij}$ Maxwell stress tensor, with $\vec{E} \sim \frac{1}{r^2}$ for $r > R$)
 $T_{00}(r)_{QED} = \frac{1}{2} \frac{\alpha}{4\pi} \frac{\hbar c}{r^4}$
 $p(r)_{QED} = -\frac{\alpha}{4\pi} \frac{\hbar c}{r^4}$

Important: in classical model **consistently** incorporated! balance of forces: von Laue condition $\int_0^\infty dr \ r^2 p(r) = 0$ consistent nonperturbative solution, proton stable!