# Independent Fragmentation and Role of Charge Symmetry

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop

Whitney Armstrong Argonne National Laboratory

#### Introduction

#### What is Charge symmetry?

Charge symmetry (CS) is a specific rotation in isospin space. It is the invariance with respect to rotation of  $\pi$  about the T2 axis.

 $P_{CS} = \exp(i\pi T2)$ 

 $P_{CS} |d\rangle = |u\rangle$  $P_{CS} |u\rangle = -|d\rangle$ 

#### Low Energy: CS in nuclei

CS operator interchanges neutrons and protons

- CS goes back to the charge independence of N force.
- pp and nn scattering lengths are nearly the same
- $M_n \simeq M_p$
- $B(n, {}^{3}He) \simeq B(p, {}^{3}H)$  and energy levels in other mirror nuclei are equal (to 1%)
- $m(^{3}He) \simeq m(^{3}H)$

After electromagnetic corrections CS respected down to  $\sim 1\%$ 

ENERGY US Department of Energy accounty managed by UChicago Argonne, LLC.

Whitney Armstrong

#### QCD: Quark level

- $u^p(x, Q^2) = d^n(x, Q^2)$  $d^p(x, Q^2) = u^n(x, Q^2)$
- Origin of CS violations:  $\rightarrow$  Electromagnetic interaction  $\rightarrow \delta m = m_d - m_d$

Naively, one would expect CSV would be on the order of  $(m_d - m_u)/\langle M \rangle$ , where  $\langle M \rangle$  is roughly 0.5 - 1.0 GeV $\rightarrow$  CSV effect about 1%



#### Motivation

- Charge symmetry violation is an important ingredient for pushing the precision frontier in the partonic structure of the nucleon
- Charge symmetry is often assumed in extracting PDFs from data where the data is limited in sensitivity to CS violation
- The validity of charge symmetry is a necessary condition for many relations between structure functions and sum rules
- Flavor symmetry violation extraction  $\bar{u}(x) \neq \bar{d}(x)$  relies on the implicit assumption of charge symmetry (in the sea quarks)
- Charge symmetry violation viable part of explanation for the anomalous value of the Weinberg angle extracted by NuTeV experiment
- CSV is related to our understanding of the flavor dependence of the quark masses (one of the key unsolved problems in Physics why is m<sub>d</sub> ~ m<sub>u</sub> ≠ m<sub>s</sub> ≠ m<sub>c</sub> ≠ m<sub>b</sub> ≠ m<sub>t</sub> )





## Upper Limits on CSV

Theoretical Limits



Model by Rodionov, Thomas and Londergan  $\delta d(x)$  could reach up to 10% at high x

E. N. Rodionov, A. W. Thomas and J. T. Londergan, Mod. Phys. Lett. A 9, 1799 (1994)

REPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Whitney Armstrong



## Upper Limits on CSV

Phenomenological limits

MRST included CSV in a phenomenological evaluation of PDFs



Using the uncertainties in PDFs studied by MRST Group, CSV is constrained to less than 9%



Whitney Armstrong



## Upper Limits on CSV $_{\text{Lattice QCD}}$

The charge symmetry violation via lattice simulation:

$$\delta U = \int_0^1 dx x \delta u(x) = 0.0023(7)$$
  
$$\delta D = \int_0^1 dx x \delta d(x) = 0.0017(4)$$

The dash-dotted, dashed and solid curves represent pure QED, pure QCD and the total contributions. The results is compatible with the MRST analysis. Physics Letters B, 753:595–599





Whitney Armstrong



#### Upper Limits on CSV Experimental Limits

- Upper limit obtained by combining neutral and charged current data on isoscaler targets
- $F_{2\nu}$  by CCFR collaboration at FNAL (Fe data)
- $F_{2\gamma}$  by NMC collaboration using muons (D target)
- $0.1 \le x \le 0.4 \rightarrow$  9% upper limit for CSV effect!

#### "Charge Ratio"

$$\begin{aligned} R_{c}(x) &= \frac{F_{2}^{\gamma}(x) + x \left[s(x) + \bar{s}(x) - c(x) - \bar{c}(x)\right]/6}{5\bar{F}_{2}^{W(x)}/18} \\ &\simeq 1 + \frac{3\left(\delta u(x) + \delta \bar{u}(x) - \delta d(x) - \delta \bar{d}(x)\right)}{10\bar{Q}(x)} \\ \bar{Q}(x) &= \sum_{u,d,s} \left(q(x) + \bar{q}(x)\right) \end{aligned}$$



Londergan and Thomas. Prog. Part. Nucl. Phys. 41 (1998) 49-124



Whitney Armstrong



## Formalism

| Charge Symmetry Violation             |       |                                                                 |
|---------------------------------------|-------|-----------------------------------------------------------------|
| $CSV(x) = \delta d - \delta u \neq 0$ | where | $\delta u(x) = u^p(x) - d^n(x) \ \delta d(x) = d^p(x) - u^n(x)$ |

Londergan, Pang and Thomas PRD54(1996)3154

$$R_{meas}^{D}(x,z) = \frac{4N^{D\pi^{-}}(x,z) - N^{D\pi^{+}}(x,z)}{N^{D\pi^{+}}(x,z) - N^{D\pi^{-}}(x,z)} = \frac{4R_{Y}(x,z) - 1}{1 - R_{Y}(x,z)}$$
(1)

where  $N^{D\pi^{\pm}}(x,z)$  is the **measured yield** of  $\pi^{\pm}$  electroproduction on a deuterium target,  $R_Y$  is the  $N^{D\pi^{-}}/N^{D\pi^{+}}$  yield ratio and We rely on

#### Factorization

$$N^{Nh} = \sum_i e_i^2 q_i^N(x) D_i^h(z)$$

#### Impulse Approximation

$$N^{D\pi^{\pm}}(x,z) = N^{p\pi^{\pm}}(x,z) + N^{n\pi^{\pm}}(x,z)$$



Whitney Armstrong



## Formalism

Leading order experimental analysis  $\rightarrow$  will need higher order global analysis

#### Londergan, Pang and Thomas PRD54(1996)3154

D(z) R(x, z) + A(x)CSV(x) = B(x, z)

$$D(z) = \frac{1 - \Delta(z)}{1 + \Delta(z)}, \Delta(z) = \frac{D_u^{\pi^-}(z)}{D_u^{\pi^+}(z)}$$

$$R(x, z) = \frac{5}{2} + R_{meas}^D$$

$$CSV(x) = \delta d - \delta u$$

$$A(x) = \frac{-4}{3(u_v + d_v)}$$

$$B(x, z) = \frac{5}{2} + R_{sea_s}^D(x, z) + R_{sea_sNS}^D(x)$$

$$R_{sea_sS}^D(x) = \frac{5(\overline{u}^p(x) + \overline{d}^p(x)]}{[u_v^p(x) + d_v^p(x)]}$$

$$R_{sea_s}^D(x, z) = \frac{\Delta_s(z)[s(x) + \overline{s}(x)]/(1 + \Delta(z))}{[u_v^p(x) + d_v^p(x)]}$$

$$\Delta_s(z) = \frac{D_s^-(z) + D_s^+(z)}{D_u^+(z)}$$

A(x) and B(x, z) are known and R(x, z) is measured

#### CSV

Extract simultaneously D(z) and CSV(x) from each ( $Q^2$ ,x) setting



Whitney Armstrong



## Experiment E12-09-002

Kinematic Coverage

Charge Symmetry Violating Quark Distributions via Precise Measurement of  $\pi^+/\pi^-$  Ratios in Semi-inclusive Deep Inelastic Scattering.



## Preliminary $R_{meas}^D$





Armstrong

## CSV in Parton Distribution and Fragmentation Functions



- Early results show best agreement with data when CSV is included in FFs (i.e. when we use DSS)
- Leads to nominal  $\rho$  background subtraction
- Ratios should be come



Whitney Armstrong



#### Factorization

Berger's criterion:  $\Delta \eta \gtrsim 2$ Sets  $z_{min}$  for a given  $W_{max}$  (for pions) See Chapter 8 from S.J. Joosten, Ph.D. thesis, Illinois Univ., Urbana (2013), Mulders AIP Conf.Proc. 588 (2001) 1, 75-88 JLab 6 GeV 11 GeV 22 GeV HERMES 0.29 0.22 0.16 0.135  $z_{min} \rightarrow$ Charge Ratio Sum and Differences  $\sigma_p^{\pi^+} - \sigma_p^{\pi^-}$  $4 - 3R^{-}$  $\frac{1}{2} = \frac{4u_v(x) - d_v(x)}{3(u_v() + d_v(x))} = R^{-1}$  $d_{m}$  $3R^{-} + 1$ Har  $\sigma^{\pi^+}_{\pi^+} - \sigma^{\pi^-}_{\pi^-}$ aliminon elimina  $x = 0.35, O^2 = 4$ 1.4  $x = 0.35, O^2 = 4$  $0.45, O^2 = 4$ x = 0.45,  $O^2 = 4$ 2.5 1.2 - $= 0.45, Q^2 = 4.75$  $x = 0.45, O^2 = 4.75$  $= 0.55 \ O^2 = 4.75$  $x = 0.55, O^2 = 4.75$ 2.0 1.0 x = 0.6,  $Q^2 = 5.5$ x = 0.6,  $O^2 = 5.5$ PRELIN 8.0 s elimin 0.6 1.0 0.4 0.5 0.2 0.0 0.0 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 7 7 Ratios should not depend on z.  $\sigma_n^{\pi}$  $+ \sigma_n^{\pi}$  $4u + 4\overline{u} + d + \overline{d}$ rgonne National Laboratory is a US. Department of Energy laboratory ENERGY  $\overline{5(u+\overline{u}+d+\overline{d})}$ JanuadvWhitney Armstrong

## Factorization



Whitney Armstrong



## Summary

- Conducted precision semi-inclusive measurements of the  $\pi^-/\pi^+$  ratio on a deuterium target
- Extracted the CSV parton distribution and fragmentation function ratio for a range of x... Q2 and z...
- Different FF models suggests a CSV fragmentation function should be considered in a global analysis
- Results for the CSV parton distribution are consistent with previous estimates

#### JLab at 22 GeV Ideas

- Extend the kinematics of a precision ratio measurement to higher  $Q^2 \rightarrow$  should have some phase space overlap with standard global analyses
- Use other isoscalar targets: compare D to <sup>4</sup>He Either fragmentation is independent and just EMC effect, or something else?
- Need to investigate momentum upper limits of spectrometers?







Thank you!







Backups



Whitney Armstrong



## Charge Symmetry in QPM

Charge-conjugation symmetry  $D^{\pi^{\pm}}_{\bar{u}} = D^{\pi^{\mp}}_{\bar{u}}$ 

Charge Symmetry

 
$$D_u^{\pi^+} = D_d^{\pi^-}$$
 $D_{\bar{u}}^{\pi^+} = D_{\bar{u}}^{\pi^-}$ 
 $D_d^{\pi^+} = D_u^{\pi^-}$ 
 $D_{\bar{d}}^{\pi^+} = D_{\bar{u}}^{\pi^-}$ 

#### **Gottfried Sum Rule**

$$S_G = \int_0^1 dx \left[ \frac{F_2^p - F_2^n}{x} \right]$$
  
=  $\frac{1}{3} + \frac{2}{9} \int_0^1 dx \left[ 4\bar{u}^p + \bar{d}^p - 4\bar{u}^n - \bar{d}^n \right]$   
 $\stackrel{\text{CS}}{=} \frac{1}{3} + \frac{2}{3} \int_0^1 dx \left[ \bar{u}^p - \bar{d}^p \right]$   
Londergan and Thomas. Prog. Part. Nucl. Phys. 41 (1998) 49-124



Whitney Armstrong

