Role of $R = \sigma_L / \sigma_T$ in Semi-Inclusive Deep Inelastic Scattering Experiments

- What is R?
- Why is it important to measure?

Thanks to Rolf Ent, Thia Keppel, and Dave Gaskell for critical help in the preparation of this talk!

What is R?

Inclusive DIS: $\frac{d^2\sigma}{d\Omega_e dE'} = \sigma_{Mott} \{ W_2(Q^2, W^2) + 2W_1(Q^2, W^2) tan^2(\theta/2) \},$

$$F_1(x,Q^2) = MW_1(\nu,Q^2) ,$$

$$F_2(x,Q^2) = \nu W_2(\nu,Q^2) .$$

$$F_2(x) = 2xF_1(x) = x\sum_a e_q^2 \left(q(x) + \bar{q}(x)\right)$$

Inclusive DIS in terms of L and T cross sections:

$$\frac{1}{\Gamma} \frac{d^2 \sigma}{d\Omega dE'} = \sigma_T + \varepsilon \sigma_L$$

$$\Gamma = \frac{\alpha}{2\pi^2 Q^2} \frac{E'}{E} \frac{1}{1-\varepsilon} \qquad \qquad \varepsilon = \left[1 + 2\left(1 + \frac{\nu^2}{Q^2}\right) \tan^2\left(\frac{\theta}{2}\right)\right]^{-1}$$

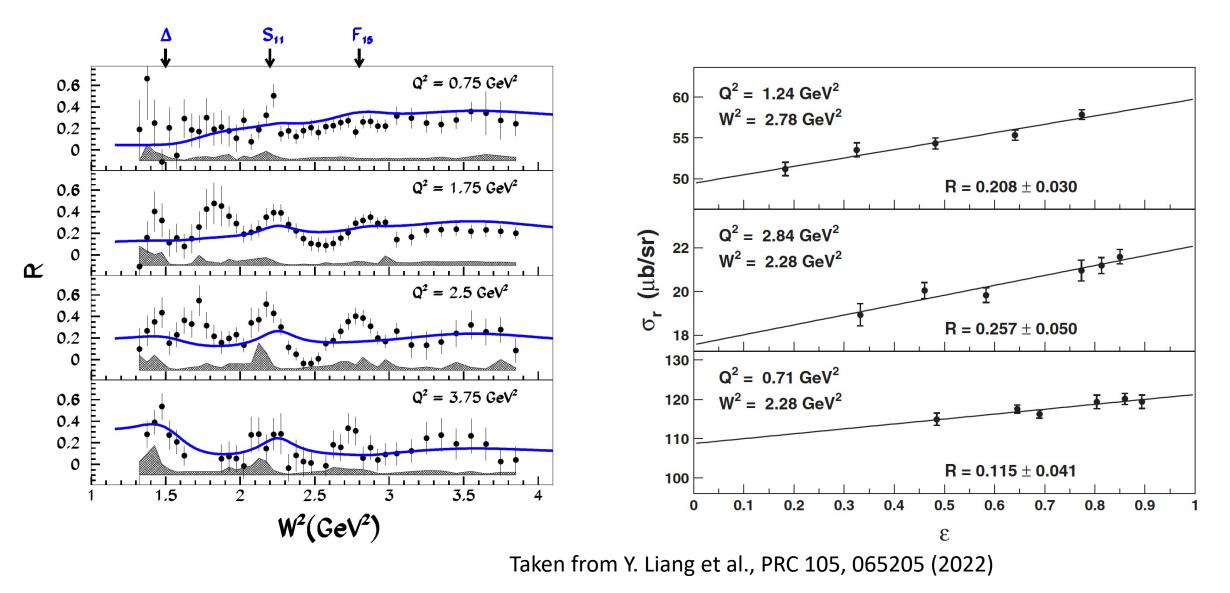
- 0.

What is R?

$$F_1(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha} \frac{(1-x)}{2x} \sigma_T$$
Purely Transverse: Sensitive to
single parton densities

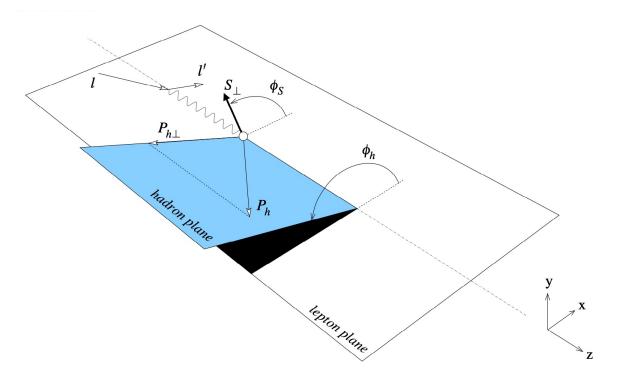
$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha} \frac{1}{1+\frac{Q^2}{\nu^2}} (1-x)(\sigma_L + \sigma_T)$$
Mixture of L and T

Define Pure L and ratio R:


$$F_L(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha} (1-x)\sigma_L \qquad R(x,Q^2) = \frac{\sigma_L}{\sigma_T} = \frac{F_L}{2xF_1}$$

 $R = \sigma_L / \sigma_T$ is a basic aspect of the photon-parton interaction

- First DIS evidence that quarks had spin $\frac{1}{2}$ (R \rightarrow 0 as $Q^2 \rightarrow \infty$)
- At moderate fixed x, falls as $1/Q^2$
- At moderate Q² finite, non-zero, sensitive to indirect gluon effects and higher twist
- In naïve quark model, sensitive to intrinsic transverse momentum k_T :


$$R = 4(M^2x^2 - \langle k_t^2 \rangle)/(Q^2 + 2\langle k_t^2 \rangle)$$

Connected to TMDs!

What is R in Inclusive DIS?

What is R in Semi Inclusive DIS?

 $\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h+}^2} =$ $\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$ $+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{UU}^{\sin \phi_h}$ $+ S_{\parallel} \left| \sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right|$ + $S_{\parallel}\lambda_{e}$ $\left| \sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{h} F_{LL}^{\cos \phi_{h}} \right|$ $+ |\boldsymbol{S}_{\perp}| \left| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right|$ + $\varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$ $+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}$ $+ |\mathbf{S}_{\perp}|\lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1 - \varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}} \right|$ $+ \sqrt{2 \varepsilon (1 - \varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \bigg| \bigg\},$

Taken from A. Bacchetta et al., JHEP02, 093 (2007)

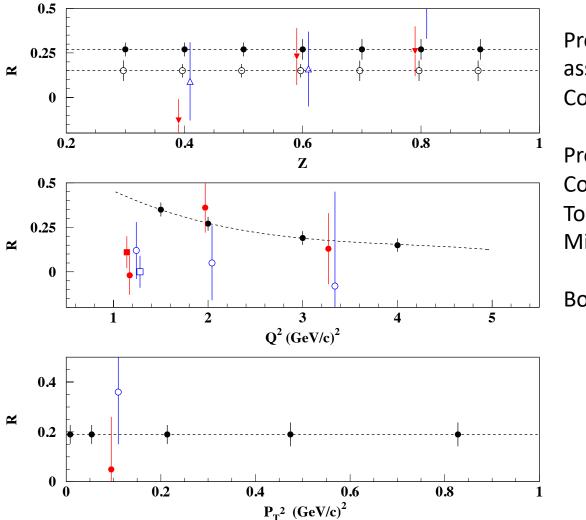
What is R in Semi Inclusive DIS?

Without polarized beam and target

$$F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h}$$

 $\sigma = \Gamma(\sigma_{\rm T} + \varepsilon \sigma_{\rm L} + [\varepsilon(\varepsilon + 1)/2]^{1/2} \cos(\phi) \sigma_{\rm LT} + \varepsilon \cos(2\phi) \sigma_{\rm TT})$

In addition to x and Q^2 , can depend on z and p_T


Almost no experimental knowledge of R in SIDIS!!!

Hall C will explore this soon!

E12-06-104, Spokespersons: P. Bosted, R. Ent, E. Kinney, and H. Mkrtchyan

- This experiment will make precise measurements of R in charged π and K SIDIS on H and D targets as a function of Q^2 , fractional hadron momentum z, and hadron transverse momentum p_T
- Standard technique to measure R: Vary the virtual photon polarization ε by using different incident beam energies and electron scattering angles, while keeping the Q^2 , x, z, and p_T constant. Will use the two magnetic spectrometers in Hall C.

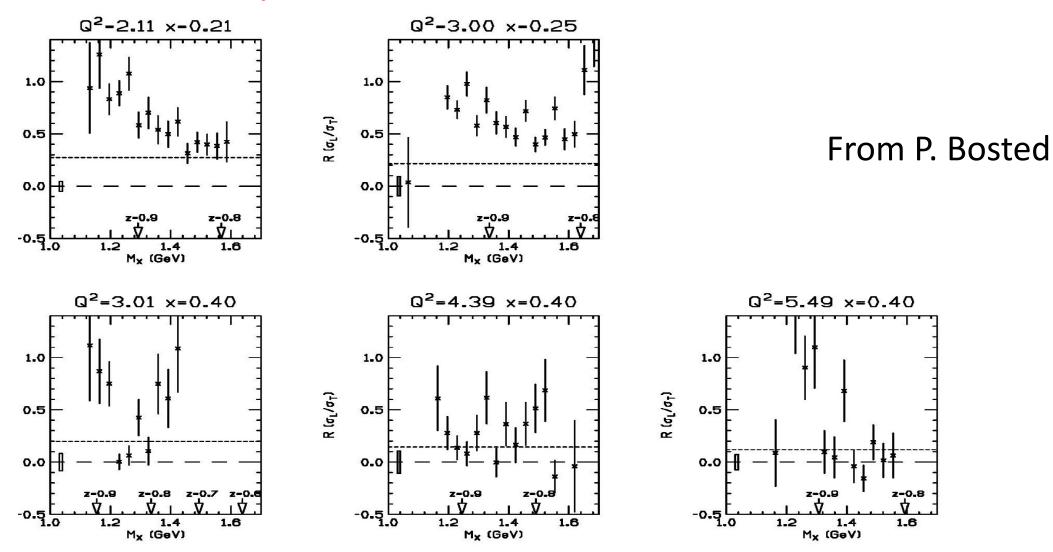
Previous compared to proposed

Projections for E12-06-104 vs existing Cornell Data (projections assume $R_{SIDIS} = R_{DIS}$) Comparable 1.6% systematic uncertainties not indicated

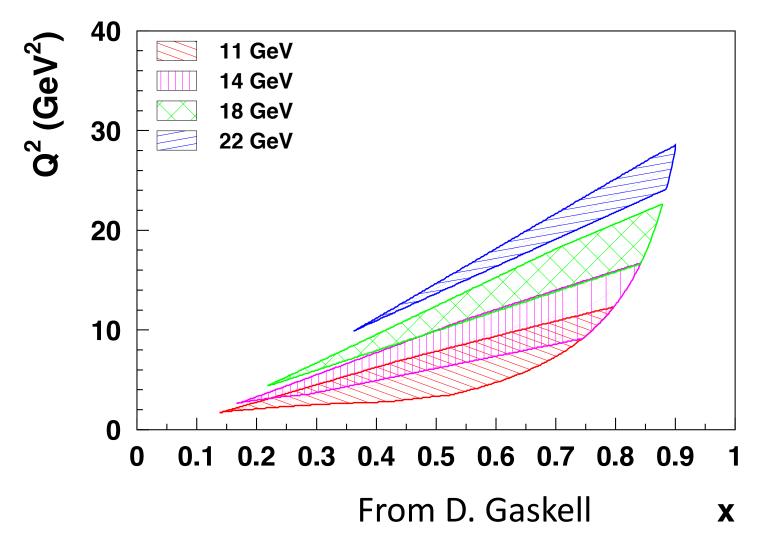
Projections: Solid Black H, Open Black D π Cornell:

Top panel: solid red (open blue) π^+ (π^-) on LH₂

Middle : solid red (open blue) dots are π^+ (π^-) on LH₂ solid red (open blue) squares are π^+ (π^-) on LD₂

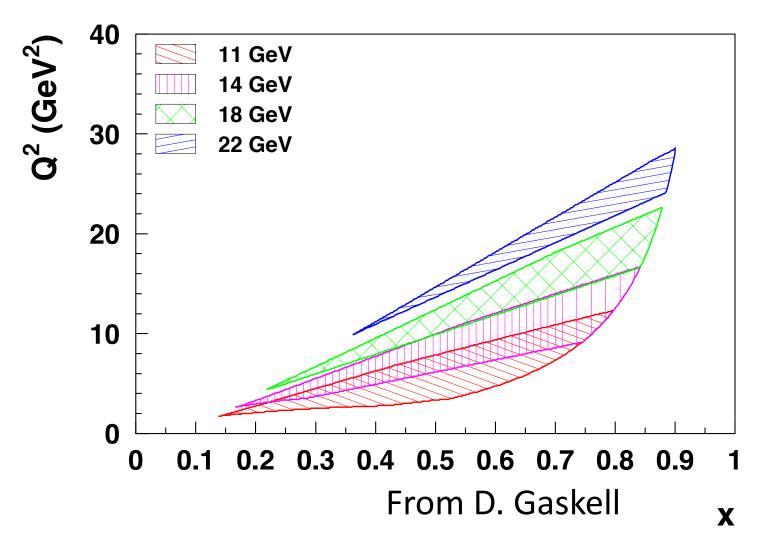

Bottom : solid red (open blue) dots are for π^+ (π^-) on LH₂

• We will be able to test many common assumptions used in SIDIS analyses:


$$R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{\pi^{-}}? \qquad R_{SIDIS}^{H} = R_{SIDIS}^{D}? \qquad R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{K^{+}}? \qquad R_{SIDIS}^{K^{+}} = R_{SIDIS}^{K^{-}}?$$

- Important for determining spin structure function g_1^h (need term $(1 + \varepsilon R)$ to get g_1^h/F_1^h from A_{\parallel}^h)
- At low z, expect DIS Q² behavior ($\sim 1/Q^2$), but as z \rightarrow 1, expect Deep-Exclusive Q² behavior ($\sim Q^2$)
- Completely unknown p_T behavior, which might impact on TMD analyses

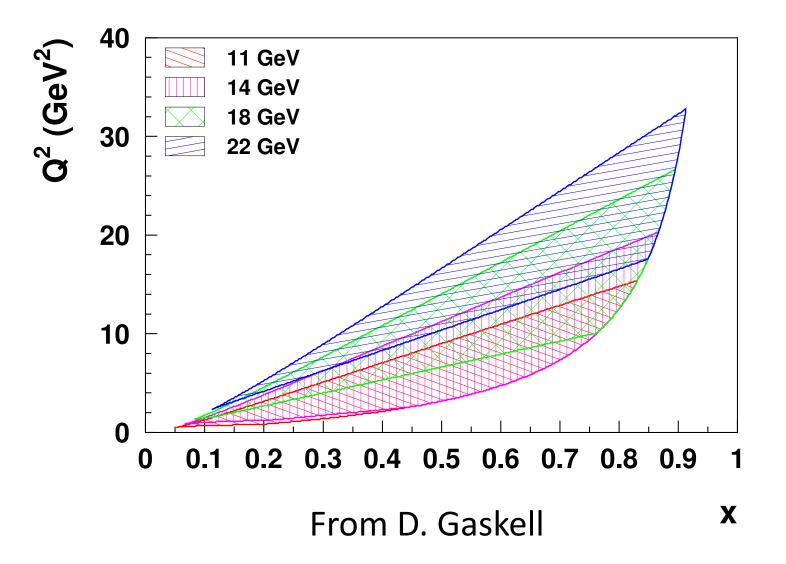
Preliminary SIDIS Results from Hall C!!!



What can we do at 22 GeV?

Kinematic ranges accessible in Hall C with existing HMS and SHMS spectrometers and that can achieve two ε values separated by 0.2 with a minimum ε of 0.1

What can we do at 22 GeV?


- Explore R and σ_L at higher x and Q²
- Combine with 11 GeV results. Can we see approach to constituent (dressed) parton behavior?
- Need to simulate!
 - Effect of upgrade to HMS under study

Why at Jefferson Lab at 22 GeV?

- R is a fundamental measurement of hadron structure
 - Critical to precise determination of pdfs and TMDs
 - Longitudinal cross section explores "non-perturbative" structure beyond simple quark model
- Very difficult to access at high energy colliders due to small range of ε, whereas Jefferson has luminosity and ε range to carry out timely and precise measurements!

Backup Slide

Upgraded HMS (θmin=5°, Pmax =11 GeV/c)

