Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop

January 24, 2023

The role of vector mesons on transverse-spin asymmetries in SIDIS

Albi Kerbizi

Trieste University and INFN Trieste Section

JLAB at 22 GeV

Albi Kerbizi (Trieste University and INFN

- Extension of the Lund string model

string decays via tunnelling of $q\bar{q}$ pairs in relative ${}^{3}P_{0}$ state

- Quantum mechanical model, based on amplitudes

AK, X. Artru, A. Martin, **PRD 104** (2021) 11, 114038

(polarized) vector meson emission

c) Oblique polarization

described by free parameter μ (complex mass) for the ³P₀ w.f. Im(μ) \propto size of Collins effect for PS/VM

a) + b) described by the free parameter f_L = fraction of L polarized VMs $f_L \propto$ size of Collins effect for VM

c) described by the (phase) parameter θ_{LT} gives oblique (LT) polarization $\sin\theta_{LT} \propto$ size of Collins effect for decay mesons

the parameters have to be fixed from data

7

Results from simulations of T polarized SIDIS off protons COMPASS and HERMES kinematics

concentrate mostly on Collins asymmetries $A_{UT}^{\sin(\phi_h + \phi_S - \pi)}$ amplitude of the $\sin \phi_{Coll} = \sin(\phi_h + \phi_S - \pi)$ modulation

relevant variables: x_B , $z_h = P \cdot P_h / P \cdot q$, P_T

simulation settings \rightarrow backup slides

Collins asymmetries for π^+ @ COMPASS kin.

VM production \rightarrow sizeable dilution of the average asymmetry the result with only PS mesons scaled by ~ 0.5 to compare the shapes

VM polarization \rightarrow variations in the trend of the asymmetries mainly at small P_T and large z_h

Comparison of simulated TSA with data

JLAB at 22 GeV

Trieste)

Results from simulations of T polarized SIDIS off protons $e~P \rightarrow e~h~X @$ 22 GeV

kinematic selections similar to the HERMES analysis (see backup)

Collins asymmetries for pions @ JLab 22 GeV

Collins TSA for π

slow decay as function of x_B main contribution from valence quarks

Decomposition of TSA for π^+

strong competition between primary and secondary mesons in the construction of the final asymmetry

Fraction of secondary π

Large contribution of decay mesons at small P_T and small $\boldsymbol{z}_h!$

Albi Kerbizi (Trieste University and INFN

Trieste)

Collins asymmetries for ρ - mesons @ JLab 22 GeV

- Asymmetry of decay pions same sign as the parent VM and diluted *still sizeable!*

decay mesons contribute mostly at (relatively) small \boldsymbol{z}_h and small \boldsymbol{P}_T

Albi Kerbizi (Trieste University and INFN

Conclusions

• Using the string+³P₀ model in Pythia via StringSpinner, we can simulate (transverse)-spin effects in SIDIS

• Transverse-spin effects in SIDIS @ Jlab 22 GeV are expected to be sizeable

• The observed transverse-spin effects strongly depend on vector meson production and their polarization *the contribution of VMs to the osberved hadron sample is large*

VMs are essential to understand the physics of (polarized) hadronization, and for the interpretation of data *experimental information on inclusively produced VMs is however limited, more data is needed!*

Backup

Relevant free parameters for string fragmentation used in simulations

(see Kerbizi, Artru, Martin, PRD104 (2021) 11, 114038)

Pythia parameters	
StringZ:aLund	0.9
StringZ:bLund	$0.5 (GeV/c^2)^{-2}$
StringPT:sigma	0.37 GeV/c
StringPT:enhancedFraction	0.0
StringPT:enhancedWidth	0.0 GeV/c
BeamRemnants:primordialKT	off
String+ ³ P ₀ parameters	
$\operatorname{Re}(\mu)$	0.42 GeV/c^2
$Im(\mu)$	0.76 GeV/c ²
f_L	0.93, 0.33, 0.02
$ heta_{LT}$	$-\pi/2, 0, +\pi/2$

Phase space and kinematic selections for TSA @ Jlab 22 GeV

$$\begin{split} Q^2 > 1 \, \left(\frac{GeV}{c} \right)^2, \qquad & W^2 > 10 \, \left(\frac{GeV}{c^2} \right)^2, \qquad 0.2 < y < 0.85, \qquad 0.032 < x_B < 0.7 \\ & 0.2 < z_h < 0.8, \qquad 0.1 \frac{GeV}{c} < P_T < 1.3 \frac{GeV}{c} \end{split}$$

Albi Kerbizi (Trieste University and INFN