The relevance of multidimensional binning in SIDIS measurements: COMPASS experience

CERN

INFN

BAKUR PARSAMYAN

AANL, INFN section of Turin and CERN on behalf of the COMPASS Collaboration

"Science at the Luminosity Frontier: Jefferson Lab at 22 GeV workshop" 23-26 January 2022, JLab, US

24 January 2023

Introductory message

- For a better and more complex understanding of the TMD-spin-phenomena, it is important to carry out the extractions, analyses and various corrections in a multi-D approach
- It is also important to carefully confront experimental data from different experiments
- Different complex analysis techniques, Monte-Carlo simulations and various corrections (acceptance, VMs, radiative corrections) are being employed by different experimental collaborations
 - Closer collaboration between different experimental groups would be very beneficial for the field in general
 - Sharing the tools (MC, generators, analysis techniques), preliminary results, doing crossanalyses, etc.
- Close collaboration between experimentalists on one side and phenomenologists and theorists on the other would also be very beneficial
 - Flexibility in adapting on the analysis side (in a timely manner) the choice of the observables, phase-space limitations, etc.
 - Ideally a close collaborative work can be organized

COMPASS collaboration

 \odot

✿

- 25 institutions from 13 countries – nearly 200 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

International Workshop on Hadron Structure and Spectroscopy IWHSS-2022 workshop (anniversary edition) CERN Globe August 29-31 2022

24 January 2023 B. Parsar

COMPASS

COMPASS collaboration

- 25 institutions from 13 countries – nearly 200 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

Wide physics program COMPASS-I

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

COMPASS-II

- Data taking 2012-2022
- Primakoff
- DVCS (GPD+SIDIS)
- Polarized Drell-Yan
- Transverse deuteron SIDIS 2022

COMPASS web page: http://www.compass.cern.ch

۲

\$

OMPAS

COMPASS data taking campaigns

Beam	Target	year	Physics programme
μ+	Polarized deuteron (LiD)	2002 2003 2004	80% Longitudinal 20% Transverse SIDIS
		2006	Longitudinal SIDIS
	Polarized proton (NH ₃)	2007	50% Longitudinal 50% Transverse SIDIS
π K p	LH ₂ , Ni, Pb, W	2008 2009	Spectroscopy
μ+	Polarized proton (NH ₃)	2010	Transverse SIDIS
		2011	Longitudinal SIDIS
$\pi \mathbf{K} \mathbf{p}$	Ni	2012	Primakoff
μ±	LH ₂	2012	Pilot DVCS & HEMP & unpolarized SIDIS
π-	Polarized proton (NH ₃)	2014	Pilot Drell-Yan
		2015 2018	Transverse Drell-Yan
μ^{\pm}	LH ₂	2016 2017	DVCS & HEMP & unpolarized SIDIS
μ^+	Polarized deuteron (⁶ LiD)	2021 2022	Transverse SIDIS

COMPASS data taking campaigns

COM	IADD data taking	cam		
Beam	Target	year	Physics programme	25 years 1997 - 2022
μ+	Polarized deuteron (⁶ LiD)	2002 2003 2004	80% Longitudinal 20% Transverse SIDIS	+
• Tota ~5.9 90 6.0E+18 1.0E+18 3.0E+18 2.0E+18 1.0E+18 0.0E+00	al number of protons delivered 5×10^{18} (98%) in about 150 da 10^{18} (98%) in about 150	l on T6: tys	SPS efficiency: ~ 73% Spectrometer efficiency: ~ 90% Physics data collection efficiency: ~ 7	15%
μ_{+}	Polarized deuteron (⁶ LiD)	2021 2022	Transverse SIDIS	
24 January 2	2023	B. F	- Parsamyan	6

4\$\$

COMPASS experimental setup

•

24 January 2023

COMPASS experimental setup: Phase II (DY programme)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

The COMPASS Experiment at the CERN SPS

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Nucleon structure

- Hard scattering of μ[±] and π⁻ off (un)polarized P/D targets
- Study of nucleon spin structure
- Parton distribution functions and fragmentation functions

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

The COMPASS Experiment at the CERN SPS

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Nucleon structure

- Hard scattering of μ[±] and π⁻ off (un)polarized P/D targets
- Study of nucleon spin structure
- Parton distribution functions and fragmentation functions

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
 - PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

Increasing resolution scale

(momentum transfer)

B. Parsamyan

 $\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times \left(1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \ldots\right)$

Cahn effect *R. N. Cahn*, **PLB 78** (1978)

The point that there are azimuthal dependences, which arise from the transverse momenta of the partons was clearly stated in this papers: T.P. Cheng and A. Zee, **Phys. Rev. D6** (1972) 885; F. Ravndal, **Phys. Lett. 43B** (1973) 301. R.L. Kingsley, **Phys. Rev. D10** (1974) 1580; A.M. Kotsinyan, **Teor. Mat. Fiz. 24** (1975) 206;

As of 1978 – simplistic kinematic effect:

- non-zero k_T induces an azimuthal modulation
 As of 2022 complex SF (twist-2/3 functions)
- Measurements by different experiments

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} C \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} \left(xhH_{1q}^{\perp h} + \frac{M_h}{M} f_1^{q} \frac{\tilde{D}_q^{\perp h}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}}{M} \left(xf^{\perp q} D_{1q}^{h} + \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{H}_q^{h}}{z} \right) \right\}$$
24 January 2023
B. Parsamyan

Significant non-zero effect observed by a number of experiments

13

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times \left(1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \ldots\right)$$

As of 1978 – simplistic kinematic effect:

- non-zero k_T induces an azimuthal modulation
 As of 2022 complex SF (twist-2/3 functions)
- Measurements by different experiments

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} C \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \left(xhH_{1q}^{\perp h} + \frac{M_h}{M} f_1^{q} \frac{\tilde{D}_q^{\perp h}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} \left(xf^{\perp q} D_{1q}^{h} + \frac{M_h}{M} h_1^{\perp q} \frac{\tilde{H}_q^{h}}{z} \right) \right\}$$
24 January 2023 B. Parsamyan

Significant non-zero effect observed by a number of experiments

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h +...)$$

As of 1978 – simplistic kinematic effect:

- non-zero k_T induces an azimuthal modulation
 As of 2022 complex SF (twist-2/3 functions)
- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation

B. Parsamyan

$$\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{s}} = \left[\frac{\alpha}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_{h}}\cos\phi_{h}+\ldots)$$
Quark
U
Nucleon
U

As of 1978 – simplistic kinematic effect:

- non-zero k_T induces an azimuthal modulation
 As of 2022 complex SF (twist-2/3 functions)
- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation

24 January 2023

B. Parsamyan

16

As of 1978 – simplistic kinematic effect:

- non-zero k_T induces an azimuthal modulation
 As of 2022 complex SF (twist-2/3 functions)
- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation

As of 1978 – simplistic kinematic effect:

- non-zero k_{T} induces an azimuthal modulation As of 2022 – complex SF (twist-2/3 functions)
- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation

SIDIS x-section and TMDs at twist-2

24 January 2023

SIDIS x-section and TMDs at twist-2

SIDIS x-section and TMDs at twist-2

$$\frac{d\sigma}{dxdydzdp_{t}^{2}d\phi_{t}d\phi_{s}} = All \text{ measured by COMPASS}$$

$$\begin{bmatrix} \frac{\sigma}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \right] (F_{UU,T} + \varepsilon F_{UU,L})$$

$$\| + \sqrt{2\varepsilon(1-\varepsilon)} A_{UU}^{meas} \cos \phi_{h} + \varepsilon A_{UU}^{meass} \cos 2\phi_{h} + \varepsilon A_{UU}^{meass} \cos 2\phi_{h} + \lambda \sqrt{2\varepsilon(1-\varepsilon)} A_{UU}^{meass} \sin \phi_{h} + \varepsilon A_{UU}^{meass} \sin 2\phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \sin \phi_{h} + \varepsilon A_{UL}^{meass} \cos \phi_{h} \right]$$

$$+ \sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{meass} \cos \phi_{h} + \sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{meass} \cos \phi_{h} + \sqrt$$

24 January 2023

B. Parsamyan

24 January 2023

B. Parsamyan

SIDIS and single-polarized DY x-sections at twist-2 (LO) compass

$$\frac{d\sigma^{LO}}{dq^4 d\Omega} \propto F_U^1 (1 + \cos^2 \theta_{CS}) \qquad \text{DY}$$

$$\int_{\text{DY}}^{\text{DY}} = \int_{\text{DY}}^{\text{DY}} \int_{\text{DY$$

Complementary information from two different channels :

- SIDIS-DY bridging of nucleon TMD PDFs; Universality studies;
- Sign-change of T-odd Sivers and Boer-Mulders TMD PDFs;
- Multiple access to Collins FF $H_{1q}^{\perp h}$ and pion Boer-Mulders PDF $h_{1,\pi}^{\perp q}$ 24 January 2023 B. Parsamyan

Single-polarized DY measurements at COMPASS

Valence region \rightarrow largest asymmetries 0

OMPAS

Single-polarized DY measurements at COMPASS

HM events are in the valence quark range

 $4.3 < M/(GeV/c^2) < 8.5$ "High mass" range Beyond charmonium region, background < 3% Valence region \rightarrow largest asymmetries

25

SIDIS and single-polarized DY x-sections at twist-2 (LO)

COMPASS

Comparable x:Q² coverage – minimization of possible Q²-evolution effects

SIDIS and single-polarized DY x-sections at twist-2 (LO)

1st COMPASS multi-D fit done for all eight TSAs

B. Parsamyan

SIDIS and single-polarized DY x-sections at twist-2 (LO)

COMPASS

DY TSAs at COMPASS (high-mass range)

OMPASS

COMPASS Multi-D TSA analyses

 $\frac{u \omega}{dx dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_S)} \sin\left(\phi_h - \phi_S\right) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin\left(\phi_h + \phi_S\right) \dots \right\}$

B. Parsamyan

Sivers asymmetry: 3D x-z-Q² dependence

- In several x-bins some hints for possible Q²-dependence for positive hadrons (decrease) more evident at large z
- At low z effect for h⁺ is smaller in general
- No clear picture for negative hadrons

24 January 2023

Sivers asymmetry: 3D Q²-z-x dependence

- Positive amplitude for h⁺ (increasing with x and z)
- Positive h⁻ amplitude at relatively large x (>0.032) and Q^2 (>7) at intermediate and large z
- Some hint for a possible negative h⁻ amplitude at low x (<0.032) and Q² (<7)) at intermediate and large z 24 January 2023 B. Parsamyan

COMPASS Multi-D TSA analyses

 $\frac{u o}{dx dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_S)} \sin\left(\phi_h - \phi_S\right) + \dots\right\}$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}f_{1T}^{\perp q}\boldsymbol{D}_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

HERMES, JHEP 12 (2020) 010

B.Parsamyan (for COMPASS) arXiv:1504.01599 [hep-ex] (SPIN-2014) COMPASS preliminary Proton 2010 data +h⁺ all x 0.1 **≁**h[−] 0.10<z<0.15 0.20<z<0.2 0.30<z<0.40 0.40<z<0.65 0.15<7<0.20 0.25<7<0.30 0.65<z<1.0 0.05 A^{sin(†, †}s) 1500- متالع -0.1 0.1 x<0.032 0.05 -0.1 0.1 x>0.032 0.05 -0.05 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5 1 p_T (GeV/c) p_T (GeV/c) 1 (...) (a.u.) COMPASS preliminary Proton 2010 data 0.8 D 0.3 0.4 0.5 0.6 0.7 0.1 0.7 Z 2 0.6 0.5 1.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4

0.3

0.2

0.1

z

B. Parsamyan

0.4

x

0.6

z

24 January 2023

35

 P_{hT}

COMPASS 2022 run: new unique deuteron data to come

"Nature"

Raphael "Madonna del Prato" 24 January 2023

"*1D*"

Salvador Dali "Maximum Speed of Raphael's Madonna"

"Nature"

Raphael "Madonna del Prato" 24 January 2023

Raphael "Madonna del Prato" (poor resolution)

B. Parsamyan

Conclusions

- For a better and more complex understanding of the TMD-spin-phenomena, it is important to carry out the extractions, analyses and various corrections in a multi-D approach
- It is also important to carefully confront experimental data from different experiments
- Different complex analysis techniques, Monte-Carlo simulations and various corrections (acceptance, VMs, radiative corrections) are being employed by different experimental collaborations
 - Closer collaboration between different experimental groups would be very beneficial for the field in general
 - Sharing the tools (MC, generators, analysis techniques), preliminary results, doing crossanalyses, etc.
- Close collaboration between experimentalists on one side and phenomenologists and theorists on the other would also be very beneficial
 - Flexibility in adapting on the analysis side (in a timely manner) the choice of the observables, phase-space limitations, etc.
 - Ideally a close collaborative work can be organized

• Spare slides

SIDIS TSAs: Collins effect and Transversity

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?
- Extensive phenomenological studies and various global fits by different groups

COMPAS

Sivers asymmetry: 4D Q^2-p_T-x dependence at z>0.2

- Positive amplitude for h^+ (increasing with x and z and p_T)
- Positive h⁻ amplitude at relatively large x (>0.032) and Q² (>7) at intermediate and large z (all p_T)
- Some hint for a possible negative h⁻ amplitude at low x (<0.032) and Q² (<7)) at intermediate and large z (all p_T)

24 January 2023

B. Parsamyan

OMPASS

Sivers asymmetry: 4D Q²- p_T -x dependence at 0.1<z<0.2

- Positive amplitude for h^+ (increasing with x and z and p_T)
- Positive h⁻ amplitude at relatively large x (>0.032) and Q^2 (>7) at intermediate and large z (all p_T)
- Some hint for a possible negative h⁻ amplitude at low x (<0.032) and Q² (<7)) at intermediate and large z (all p_T)

24 January 2023

B. Parsamyan

OMPASS

SIDIS: target longitudinal spin dependent asymmetries

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \dots \right\}$

Strong non-zero effect for h⁺, h⁻ compatible with zero, clear z-dependence