ALESSANDRO BACCHETTA STUDIES OF STRUCTURE FUNCTIONS IN SIDIS – THEORY

IMPROVING OUR 3D MAPS

Present data

+ JLab 24

+ EIC

+ EIC + JLab 24

JLAB 24 IMPACT STUDIES ON 1

JLab 24 can have a very significant impact in reducing the errors on TMDs and their evolution

SIDIS KINEMATICS

Q = photon virtualityM = hadron mass $P_{h\perp}$ = hadron transverse momentum = P_T Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel, <u>hep-ph/0611265</u>

 $q_T^2 pprox P_{h\perp}^2/z^2$

SIDIS STRUCTURE FUNCTIONS

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} \\ &= \frac{\alpha^{2}}{x\,y\,Q^{2}}\,\frac{y^{2}}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \right. \\ &+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\ &+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\ &+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ &+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})}\right] \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right] \right\} \end{aligned}$$

$$\begin{aligned} \frac{\alpha^2}{y Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} \right. \\ \left. \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ S_L \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} \right. \\ \left. + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin \phi_S} \right. \\ \left. + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} \right] \\ \left. + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos \phi_S} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel, hep-ph/0611265

LIST OF STRUCTURE FUNCTIONS

"SIDIS F _T "	$F_{UU,T}$
"SIDIS FL"	$F_{UU,L}$
"Cahn" - <i>f</i> ⊥	$F_{UU}^{\cos\phi_h}$
"Boer-Mulders"	$F_{UU}^{\cos 2\phi_h}$
e, g^{\perp} and friends	$F_{LU}^{\sin\phi_h}$
	$F_{UL}^{\sin\phi_h}$
"Kotzinian-Mulders"	$F_{UL}^{\sin 2\phi_h}$
<i>"SIDIS g</i> ₁ <i>"</i>	F_{LL}
	$F_{LL}^{\cos\phi_h}$
"Sivers"	$F_{UT,T}^{\sin(\phi_h -}$
	$F_{UT,L}^{\sin(\phi_h -}$
"Collins"	$F_{UT}^{\sin(\phi_h +}$
"Pretzelosity"	$F_{UT}^{\sin(3\phi_h-1)}$
f_T and friends	$F_{UT}^{\sin\phi_S}$
	$F_{UT}^{\sin(2\phi_h - f_h)}$
"Worm gear"	$F_{LT}^{\cos(\phi_h -}$
"SIDIS g ₂ " - g _T	$F_{LT}^{\cos\phi_S}$
	$F_{LT}^{\cos(2\phi_h)}$

twist	
2	
4	
3	
2	
3	
3	
2	
2	
3	
2	
4	
2	
2	
3	
3	
2	
3 <	
3	
	twist 2 4 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3

Bacchetta, Boer, Diehl, Mulders, <u>arXiv:0803.0227</u>

Not all of them are easy to access at EIC due to: x-range, twist, evolution, prefactors

Examples:

probably high-x effect, probably suppressed by evolution, small prefactor

probably high-x effect, twist-3, small prefactor

LOW AND HIGH PT

	low	h
	P_T	P
observable	twist	tw
$F_{UU,T}$	2	c Z
$F_{UU,L}$	4	، ۲
$F_{UU}^{\cos\phi_h}$	3	
$F_{UU}^{\cos 2\phi_h}$	2	
$F_{LU}^{\sin\phi_h}$	3	
$F_{UL}^{\sin \phi_h}$	3	2
$F_{UL}^{\sin 2\phi_h}$	2	
F_{LL}	2	c Z
$F_{LL}^{\cos\phi_h}$	3	
$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2	و
$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4	و
$F_{UT}^{\sin(\phi_h + \phi_S)}$	2	
$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2	
$F_{UT}^{\sin\phi_S}$	3	
$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3	
$F_{LT}^{\cos(\phi_h - \phi_S)}$	2	
$F_{LT}^{\cos\phi_S}$	3	
$F_{LT}^{\cos(2\phi_h - \phi_S)}$	3	

UNPOLARIZED AND AZIMUTHALLY INDEPENDENT PART

Integrated over φ_h

$$\frac{d\sigma}{dx\,dy\,dz\,dP_{h\perp}^2} = \frac{2\pi\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\,\left\{2\pi F_{UU,T}(x,z,P_{h\perp}^2,Q^2) + \varepsilon\,2\pi F_{UU,L}(x,z,P_{h\perp}^2,Q^2)\right\}$$

Integrated over $P_{h\perp}$

$$\frac{d\sigma}{dx\,dy\,dz} = \frac{4\pi\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\left\{ \frac{F_{UU,T}(x,z,Q^2) + \varepsilon\,F_{UU,L}(x,z,Q^2)}{2\,(1-\varepsilon)}\right\}$$

Inclusive DIS

$$\frac{d\sigma}{dx\,dy} = \frac{4\pi\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\left\{ \frac{F_T(x,Q^2) + \varepsilon\,F_L(x,Q^2)}{2\,(1-\varepsilon)}\right\}$$

$$\frac{d\sigma}{dx \, dQ^2} \approx \frac{2\pi\alpha^2}{x \, Q^2} \left[1 + (1-y)^2 \right] F_2(x, Q^2) \left\{ 1 - \frac{y^2}{1 + (1-y)^2} \frac{R}{1 + R} \right\} \qquad F_2 \approx F_T + F_L$$

Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel, <u>hep-ph/0611265</u>

In all cases, we can define

$$R = \frac{F_{UU,L}}{F_{UU,T}}$$

HOW LARGE IS R? INCLUSIVE DIS

H1 collaboration, <u>arxiv:1012.4355</u>

 $R \approx 25\%$

HOW LARGE IS F_L? INCLUSIVE DIS

2

Tvaskis et al., Hall C, <u>arxiv:1606.02614</u>

Does not behave clearly as $1/Q^2$

Higher twist and mass corrections are relevant

WHAT ABOUT SIDIS?

(schematically only)

Low transverse momentum

High transverse momentum

$$F_{UU,T} = \mathcal{C}\Big[f_1D_1\Big] \qquad \qquad \text{Twist 2} \qquad F_{UU,T} = \frac{\alpha_s}{P_{h\perp}^2}\Big[f_1 \otimes D_1\Big]_A \qquad \qquad F_{UU,T} = xf_1D_1 + \alpha_s\Big[f_1 \otimes D_1\Big]_A$$

$$F_{UU,L} = \mathcal{O}igg(rac{M^2}{Q^2}, rac{P_{h\perp}^2}{Q^2}igg)$$
 Twist 4 $F_{UU,L} =$

All of them can contain corrections

Bacchetta, Boer, Diehl, Mulders, <u>arXiv:0803.0227</u>

Integrated

$$= \frac{\alpha_s}{P_{h\perp}^2} \frac{P_{h\perp}^2}{Q^2} \left[f_1 \otimes D_1 \right]_B$$
$$= 2 F_{UU}^{\cos 2\phi_h}$$

 $F_{UU,L} = \alpha_s \left[f_1 \otimes D_1 \right]_D$

Nice about FUUL: at low transverse momentum is the cleanest twist-4 signal

$$\left(\frac{M^2}{Q^2}, \frac{P_{h\perp}^2}{Q^2}\right)$$

POSSIBLE TERMS AT LOW TRANSVERSE MOMENTUM

$$F_{UU,L} = \frac{M^2}{Q^2} \mathcal{C} \Big[\frac{4k_T^2}{M^2} f_1 D_1 + \frac{M^2}{M^2} \Big]$$

kinematic twist 4 (à la Wandzura-Wilczek)

mass corrections

see, e.g., Wei, Song, Chen, Liang, <u>arxiv:1611.08688</u>

HOW LARGE COULD IT BE @JLAB24?

$$\boldsymbol{F_{UU,L}} \stackrel{?}{=} \frac{M^2}{Q^2} \mathcal{C} \Big[\frac{4k_T^2}{M^2} f_1 D_1 \Big]$$

Large size, even at small transverse momentum. Decreases less than 1/Q²

similar approach as Anselmino et al., <u>hep-ph/0501196</u>

HOW LARGE COULD IT BE @EIC?

$$\boldsymbol{F_{UU,L}} \stackrel{?}{=} \frac{M^2}{Q^2} \mathcal{C} \left[\frac{4k_T^2}{M^2} f_1 D_1 \right]$$

Smaller at small transverse momentum. Decreases 1/Q² more evident

similar approach as Anselmino et al., <u>hep-ph/0501196</u>

WHAT ABOUT THE CONNECTION TO COS2Φ?

 $F_{UU,L} = 2 F_{UU}^{\cos 2\phi_h}$

only valid at high transverse momentum and leading order

At HERMES, the $cos2\phi$ structure function is below 5%

30.1 +

0.1 $e p \rightarrow e \pi X$

WHAT ABOUT HADRON MASS EFFECTS?

No specific study on F_L, but studies on unpolarized multiplicities

Corrections: $R_{HMC}^h = M^{h(0)}/M^h$

courtesy of A. Accardi

For pions, 5% effects

For kaons, 50% effects!

CONCLUSIONS

- The F_{UUL} structure function is not small at JLab kinematics (~20%)
- The function is smaller at high Q and low P_T
- There are no good estimates of this function in most of the phase space
 In general, the world of "higher twist effects" (kinematic, dynamic, mass...)
- In general, the world of "higher twis needs to be seriously quantified