Meson structure at JLab 22 GeV

heor

Patrick Barry, JLab

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop

January 23th, 2023

Mesons

 Pion is the Goldstone boson associated with SU(2) chiral symmetry breaking

• Kaon – SU(3)

- Simultaneously a $q \overline{q}$ bound state
- Studying these structures provides another angle to probe QCD and effective confinement scales
- More available data is desperately needed

Pion PDFs from lattice + experimental data

• The inclusion of lattice QCD data along with experimental data can also help us to reveal pion structure

TDIS program: Sullivan process and W_{π}^2

- Impose kinematic cuts on experimental data
- What about the W_{π}^2 ?

Check the resonance regions

Mass $m = 139.57039 \pm 0.00018$ MeV (S = 1.8) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m

 $I(J^{PC}) = 0,1(1^{--})$

 $\begin{array}{ll} \text{Mass } m < 1 \times 10^{-18} \text{ eV} \\ \text{Charge } q < 1 \times 10^{-46} e & (\text{mixed charge}) \\ \text{Charge } q < 1 \times 10^{-35} e & (\text{single charge}) \\ \text{Mean life } \tau = \text{Stable} \end{array}$

ρ(770)	$I^{G}(J^{PC}) = 1^{+}(1^{-})$
See the note in $\rho(770)$ Particle Listings. Mass $m = 775.26 \pm 0.25$ MeV	
Full width Γ $\Gamma_{ee} = 7.04 \pm$	= 149.1 ± 0.8 MeV ± 0.06 keV
b 1(1235)	$I^{G}(J^{PC}) = 1^{+}(1^{+})$
Full width $\Gamma =$	$(5.5 \pm 3.2 \text{ MeV} (S = 1.6))$ = 142 ± 9 MeV (S = 1.2)
a2(1	1320) $I^{G}(J^{PC}) = 1^{-}(2^{+})$
Mass $m=1316.9\pm0.9$ MeV (S = 1.9) Full width $\Gamma=107\pm5$ MeV [J]	

The quantum numbers of a charged π and photon result in specific outgoing mesons, here considered the ρ -meson

Contribution from ρ to F_2^{π}

- Comparing the Δ resonance in the nucleon to the ρ resonance in the pion
- Appreciable certainly at larger Q^2 challenging to describe with partonic degrees of freedom introduce a cut in W_{π}^2

Current 11 GeV TDIS kinematics

• Plotting available 11 GeV TDIS kinematics with a few representative W_{π}^2 curves

Choosing $W_{\pi,\max}^2 = 1.04 \text{ GeV}^2$

• Removing all data points that could be contaminated by ρ -resonance regions

Performing impact study with 11 GeV

 Create pseudodata from these points and perform global analysis with available experimental data assuming 6.5% systematic uncertainty

Kinematics with 22 GeV

• MASSIVE increase in available data points

Total kinematics

• Much larger range in x_{π} and Q^2

Impact on pion PDFs with 22 GeV

- Knowledge of pion PDFs increases dramatically with 22 GeV beam
- Assuming 1.2% systematic uncertainty

Pion SIDIS: access to TMDs

 $eN \rightarrow e'N'\pi X$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
 - Needed for tests of universality

Kinematics with 11 GeV

- Still a cut on $W_{\pi}^2 = 1.04 \text{ GeV}^2$, but SIDIS requires more phase space
- Hardly anything available with z = 0.2, $P_{h,T} = 0.2$ GeV

Kinematics with 22 GeV

• Huge increase – TMD studies becomes possible!

Conclusion

- Impacts from the 11 GeV TDIS experiment on pion PDFs will be limited, but can test the large- x_{π} behavior inferred from the Drell-Yan data
- The 11 GeV TDIS can measure the low- W_{π} pion structure function
- Much more constraints will come from larger 22 GeV upgrade
- Compared with EIC, JLab can provide more precise data
- Kaon PDF analysis may be more realistic with energy upgrade

Backup Slides

Conditional density

• We define a quantity in which describes the ratio of the 2-dimensional density to the integrated, b_T -independent number density

$$ilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv rac{ ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 oldsymbol{b}_T ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \,.$$

Average
$$b_T$$

• The conditional expectation value of b_T for a given x

$$\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T \, b_T \, \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2)$$

• Shows a measure of the transverse correlation in coordinate space of the quark in a hadron for a given *x*

What to choose for W_{π}^2

- HERA did not measure the low- W_{π}^2 region
- Potentially largest resonance comes from the ρ-meson
- Must be well above the peak of the resonance
- Estimating the safe region to be an energy above 95% of the area under the curve

Brief words on kaon TDIS

- Sullivan process applies, but a hyperon must be tagged
- Consider again, not only inclusive W^2 but W_K^2

Kinematics for 11 GeV Kaon TDIS

• Beware of such large |t| further away from kaon pole

Kinematics for 22 GeV Kaon TDIS

Accepting of more points at smaller |k|

Resonance from K^*

• The K^* resonance is much more narrow than for ρ meson

•
$$W_{K,\max}^2 = 1 \text{ GeV}^2$$

EIC vs JLab 22 GeV

 JLab measurements will be much more precise with a 200 day beam run – luminosity plays a big role

Use of W^2 for SIDIS

The unobserved invariant mass-squared in inclusive DIS is

$$W_{\rm tot}^2 = M^2 + \frac{Q^2(1 - x_{\rm Bj})}{x_{\rm Bj}}.$$
 (6.26)

In SIDIS it is

$$W_{\text{SIDIS}}^{2} = M^{2} + M_{\text{B}}^{2} + \frac{Q^{2}(1 - x_{\text{Bj}} - z_{\text{h}})}{x_{\text{Bj}}} + \frac{Q^{4}z_{\text{h}}\left(\sqrt{1 + \frac{4M^{2}x_{\text{Bj}}^{2}}{Q^{2}}}\sqrt{1 - \frac{4M^{2}x_{\text{Bj}}^{2}M_{\text{B},\text{T}}}{z_{\text{h}}^{2}Q^{4}}} - 1\right)}{2M^{2}x_{\text{Bj}}^{2}}$$
$$\stackrel{M,M_{\text{B}} \to 0}{=} \frac{Q^{2}(1 - x_{\text{Bj}})(1 - z_{\text{h}})}{x_{\text{Bj}}} - \frac{\mathbf{P}_{\text{B},\text{T}}^{2}}{z_{\text{h}}}.$$
(6.27)

• Replace M^2 with t