Experimental Status of Exotic Charmonium

(and how it might relate to the 22 GeV upgrade)

Ryan Mitchell Indiana University

January 23, 2023 SCIENCE AT THE LUMINOSITY FRONTIER: JEFFERSON LAB AT 22 GEV

What is Exotic Charmonium?

Exotic charmonium:

- states that include $c\bar{c}$ quarks but have properties inconsistent with those expected for $c\bar{c}$ mesons
- informally known as the *X*, *Y*, and *Z* states
- dozens of candidates found by Belle, BESIII, and LHCb, among others, in a variety of production mechanisms (e^+e^- annihilation, *B* decay, *pp* collisions, etc.)
- novel configurations of quarks and gluons that can be used to study the strong force

- the X(3872) [or more formally, the $\chi_{c1}(3872)$]
- the Y(4230) [or more formally, the $\psi(4230)$] [formerly known as the Y(4260)]
- the $Z_c(3900)$

- the X(3872) [or more formally, the $\chi_{c1}(3872)$]
- the Y(4230) [or more formally, the $\psi(4230)$] [formerly known as the Y(4260)]
- the $Z_c(3900)$

What is Exotic Charmonium?

Exotic charmonium:

- states that include $c\bar{c}$ quarks but have p for $c\bar{c}$ mesons
- informally known as the X, Y, and Z st
- dozens of candidates found by Belle, E in a variety of production mechanisms
- novel configurations of quarks and glu

- the X(3872) [or more formally, the $\chi_{c1}(3872)$]
- the Y(4230) [or more formally, the $\psi(4230)$] [formerly known as the Y(4260)]
- the $Z_c(3900)$

What is Exotic Charmonium?

Exotic charmonium:

- states that include $c\bar{c}$ quarks but have for $c\bar{c}$ mesons
- informally known as the X, Y, and Z s
- dozens of candidates found by Belle, in a variety of production mechanisms
- novel configurations of quarks and glu

- the X(3872) [or more formally, the $\chi_{c1}(3872)$]
- the Y(4230) [or more formally, the $\psi(4230)$] [formerly known as the Y(4260)]
- the $Z_c(3900)$

Photoproduction of Exotic Charmonium at JLab

Photoproduction of Exotic Charmonium at JLab

(I) Understanding the X(3872): Known Facts

(1) Its mass is very close to $D^0 D^{*0}$ threshold:

•
$$M(3872) - M(D^0D^{*0})$$

= $M(3872) - 2M(D^0) - [M(D^{*0}) - M(D^0)]$
= $(3871.65 \pm 0.06) - 2(1864.84 \pm 0.05) - (142.02 \pm 0.03)$
= $-0.05 \pm 0.12 \text{ MeV}/c^2$

(2) It's produced in many different processes:

- $B \rightarrow KX(3872)$
- $pp \rightarrow X(3872)$ inclusive
- PbPb $\rightarrow X(3872)$ inclusive
- $e^+e^- \rightarrow \gamma X(3872)$
- $e^+e^- \rightarrow \omega X(3872)$
- among others

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1}$, etc.

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1}$, etc.

(I) Understanding the X(3872): Known Facts

among others

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1}$, etc.

(I) Understanding the X(3872): Known Facts

• among others

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1}$, etc.

(I) Understanding the X(3872)

(1) Its mass is *very* close to $D^0 D^{*0}$ threshold:

• $M(3872) - M(D^0D^{*0})$ = $M(3872) - 2M(D^0) - [M(D^{*0}) - M(D^0)]$ = $(3871.65 \pm 0.06) - 2(1864.84 \pm 0.05) - (142.02 \pm 0.03)$ = $-0.05 \pm 0.12 \text{ MeV}/c^2$

(2) It's produced in many different processes:

- $B \rightarrow KX(3872)$
- $pp \rightarrow X(3872)$ inclusive
- PbPb $\rightarrow X(3872)$ inclusive
- $e^+e^- \rightarrow \gamma X(3872)$
- $e^+e^- \rightarrow \omega X(3872)$
- among others

(3) Absolute branching fractions to many channels are known to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1},$ etc.

(I) Understanding the X(3872): Known Facts

(1) Its mass is *very* close to $D^0 D^{*0}$ threshold:

• $M(3872) - M(D^0D^{*0})$ = $M(3872) - 2M(D^0) - [M(D^{*0}) - M(D^0)]$ = $(3871.65 \pm 0.06) - 2(1864.84 \pm 0.05) - (142.9)$ = $-0.05 \pm 0.12 \text{ MeV}/c^2$

(2) It's produced in many different processes:

- $B \rightarrow KX(3872)$
- $pp \rightarrow X(3872)$ inclusive
- PbPb $\rightarrow X(3872)$ inclusive
- $e^+e^- \rightarrow \gamma X(3872)$
- $e^+e^- \rightarrow \omega X(3872)$
- among others

BESIII, arXiv:2212.07291

Observation of a new X(3872)production process $e^+e^- \rightarrow \omega X(3872)$

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1}$, etc.

(I) Understanding the X(3872): Known Facts

-0.4

-0.5

-0.4

-0.2

• $M(3872) - M(D^0D^{*0})$ = $M(3872) - 2M(D^0) - [M(D^{*0}) - M(D^0)]$ = $(3871.65 \pm 0.06) - 2(1864.84 \pm 0.05) - (142.02)$ = $-0.05 \pm 0.12 \text{ MeV}/c^2$

(2) It's produced in many different processes:

- $B \rightarrow KX(3872)$
- $pp \rightarrow X(3872)$ inclusive
- PbPb $\rightarrow X(3872)$ inclusive
- $e^+e^- \rightarrow \gamma X(3872)$
- $e^+e^- \rightarrow \omega X(3872)$
- among others

PHYSICAL REVIEW D 102, 092005 (2020) LHCb Study of the lineshape of the $\chi_{c1}(3872)$ state 02 0.2 0.1

Re E [MeV]

(3) Absolute branching fractions to many channels are known: [thanks to an absolute measurement of $B(B^+ \rightarrow K^+X(3872))$]:

• $\rho J/\psi, \omega J/\psi, D^0 D^{*0}, \pi^0 \chi_{c1},$ etc.

(4) Its total width has been measured several ways.

-2

0.4

0.2

- increased statistics at the LHC
- multi-channel analyses at BESIII (and later STCF in China?)
- $p\bar{p}$ production at PANDA?
- (2) Find (presumably) related states:
 - the $T_{cc}(3875)$ at LHCb
 - the $T_{cs}(2900)$ at LHCb
 - the $T_{c\bar{s}}(2900)$ (with I = 1) at LHCb (arXiv:2212:02716)

- increased statistics at the LHC
- multi-channel analyses at BESIII (and later STCF in China?)
- $p\bar{p}$ production at PANDA?
- (2) Find (presumably) related states:
 - the $T_{cc}(3875)$ at LHCb
 - the $T_{cs}(2900)$ at LHCb
 - the $T_{c\bar{s}}(2900)$ (with I = 1) at LHCb (arXiv:2212:02716)

- increased statistics at the LHC
- multi-channel analyses at BESIII (and later STCF in China?)
- $p\bar{p}$ production at PANDA?
- (2) Find (presumably) related states:
 - the $T_{cc}(3875)$ at LHCb
 - the $T_{cs}(2900)$ at LHCb
 - the $T_{c\bar{s}}(2900)$ (with I = 1) at LHCb (arXiv:2212:02716)

- increased statistics at the LHC
- multi-channel analyses at BESIII (and later STCF in China?)
- $p\bar{p}$ production at PANDA?
- (2) Find (presumably) related states:
 - the $T_{cc}(3875)$ at LHCb
 - the $T_{cs}(2900)$ at LHCb
 - the $T_{c\bar{s}}(2900)$ (with I = 1) at LHCb (arXiv:2212:02716)

(I) Understanding the X(3872): The Role of JLab 22 GeV

(1) Use photoproduction of the *X*(3872) as a way to fine-tune models of *XYZ* photoproduction:

- general features of the X(3872) are known
- models of X(3872) photoproduction have significant uncertainties

(2) Investigate the intriguing photoproduction (muoproduction) results from COMPASS:

• upper limits on $\gamma N \to X(3872)N'$, but observation of $\gamma N \to \tilde{X}(3872)\pi N'(?)$

(I) Understanding the X(3872): The Role of JLab 22 GeV

(1) Use photoproduction of the *X*(3872) as a way to fine-tune models of *XYZ* photoproduction:

- general features of the X(3872) are known
- models of X(3872) photoproduction have significant uncertainties

(2) Investigate the intriguing photoproduction (muoproduction) results from COMPASS:

• upper limits on $\gamma N \to X(3872)N'$, but observation of $\gamma N \to \tilde{X}(3872)\pi N'(?)$

(1) The Y(4230) is one of a series of states seen in e^+e^- cross sections:

• the 2022 PDG includes: $\psi(4040), \psi(4160), \psi(4230), \psi(4360), \psi(4415), \psi(4630)$

(2) Exclusive e^+e^- cross sections vary dramatically from final state to final state:

• $\pi \pi J/\psi$, $\pi \pi \psi(2S)$, $\omega \chi_{c0}$, $\eta J/\psi$, etc. etc.

(3) Similar features are (apparently) absent in the inclusive e^+e^- cross section.

(1) The *Y*(4230) is one of a series of states seen in e^+e^- cross sections:

• the 2022 PDG includes: $\psi(4040), \psi(4160), \psi(4230), \psi(4360), \psi(4415), \psi(4630)$

(2) Exclusive e^+e^- cross sections vary dramatically from final state to final state:

• $\pi \pi J/\psi$, $\pi \pi \psi(2S)$, $\omega \chi_{c0}$, $\eta J/\psi$, etc. etc.

(3) Similar features are (apparently) absent in the inclusive e^+e^- cross section.

PRL 118, 092001 (2017) BESIII Precise Measurement of the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV 100 + XYZ Y(4230) σ(e⁺e⁻→π⁺π⁻J/ψ) (pb) 80 Fit I - Fit II 60 40 20 0 4.2 3.8 4.4 4 4.6 √s (GeV)

(1) The Y(4230) is one of a series of states seen in e^+e^- cross sections:

• the 2022 PDG includes: $\psi(4040), \psi(4160), \psi(4230), \psi(4360), \psi(4415), \psi(4630)$

(2) Exclusive e^+e^- cross sections vary dramatically from final state to final state:

• $\pi \pi J/\psi$, $\pi \pi \psi(2S)$, $\omega \chi_{c0}$, $\eta J/\psi$, etc. etc.

(3) Similar features are (apparently) absent in the inclusive e^+e^- cross section.

(1) Investigate similar features in bottomonium to isolate states:

- global multi-channel K-matrix fits
- improve statistics with energy scans at Belle II?

(2) Apply lessons from bottomonium to charmonium to isolate states:

- global multi-channel K-matrix fits (ongoing, harder than bottomonium)
- measure more exclusive e⁺e⁻ cross sections at BESIII (and STCF in China?)

(3) Find new production mechanisms:

• so far no luck in *B*-decays, inclusive *pp*, etc.

(1) Investigate similar features in bottomonium to isolate states:

- global multi-channel K-matrix fits
- improve statistics with energy scans at Belle II?

(2) Apply lessons from bottomonium to charmonium to isolate states:

- global multi-channel K-matrix fits (ongoing, harder than bottomonium)
- measure more exclusive e⁺e⁻ cross sections at BESIII (and STCF in China?)

(3) Find new production mechanisms:

• so far no luck in *B*-decays, inclusive *pp*, etc.

(II) Understanding the Y(4230): The Role of JLab 22 GeV

(1) Exploit the (presumably) close connection between e^+e^- and γp cross sections:

- measure exclusive cross sections for $\gamma p \rightarrow (\pi \pi J/\psi), (\eta J/\psi), (D\bar{D}), (etc.)p$ to create another handle for understanding the *Y* states
- as a preliminary step, understand existing data in the light quark sector

(II) Understanding the Y(4230): The Role of JLab 22 GeV

(1) Exploit the (presumably) close connection between e^+e^- and γp cross sections:

- measure exclusive cross sections for $\gamma p \rightarrow (\pi \pi J/\psi), (\eta J/\psi), (D\bar{D}), (etc.)p$ to create another handle for understanding the *Y* states
- as a preliminary step, understand existing data in the light quark sector

(III) Understanding the $Z_c(3900)$: Known Facts

(1) The $Z_c(3900)$ appears in the substructure of Y(4230) decays:

- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}J/\psi)$
- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(D\bar{D}^* + \bar{D}D^*)^{\pm}$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0(\pi^0 J/\psi)$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0 (D\bar{D}^* + \bar{D}D^*)^0$

(2) The J^{PC} is conclusively 1^{+-} .

(3) Similar structures have been found in related *Y*(4230) decays:

•
$$e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(4020)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}h_c)$$

- $e^+e^- \to Y(4230) \to \pi^{\mp}Z_c(4020)^{\pm} \to \pi^{\mp}(D^*\bar{D}^*)^{\pm}$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0(\pi^0 h_c)$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0 (D^* \bar{D}^*)^0$

(4) Presumably related to the $Z_c(3900)$, Z_{cs} states have also been found:

•
$$e^+e^- \rightarrow KZ_{cs} \rightarrow K(D_sD^* + D_s^*D)$$
 at BESIII

• $B \rightarrow \phi Z_{cs} \rightarrow \phi (KJ/\psi)$ at LHCb

(5) So far the $Z_c(3900)$ has only been seen in Y(4230) decays.

(III) Understanding the $Z_c(3900)$: Known Facts

(1) The $Z_c(3900)$ appears in the substructure of Y(4230) decays:

- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}J/\psi)$
- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(D\bar{D}^* + \bar{D}D^*)^{\pm}$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0(\pi^0 J/\psi)$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0 (D\bar{D}^* + \bar{D}D^*)^0$

(2) The J^{PC} is conclusively 1^{+-} .

(3) Similar structures have been found in related *Y*(4230) decays:

•
$$e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(4020)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}h_{\underline{c}})$$

•
$$e^+e^- \to Y(4230) \to \pi^{\mp}Z_c(4020)^{\pm} \to \pi^{\mp}(D^*\bar{D}^*)^{\pm}$$

- $e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0(\pi^0 h_c)$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0 (D^*\bar{D}^*)^0$

(4) Presumably related to the $Z_c(3900)$, Z_{cs} states have also been found:

•
$$e^+e^- \to KZ_{cs} \to K(D_sD^* + D_s^*D)$$
 at BESIII

• $B \to \phi Z_{cs} \to \phi (KJ/\psi)$ at LHCb

(5) So far the $Z_c(3900)$ has only been seen in Y(4230) decays.

(III) Understanding the $Z_c(3900)$: Known Facts

(1) The $Z_c(3900)$ appears in the substructure of Y(4230) decays:

- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}J/\psi)$
- $e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(3900)^{\pm} \rightarrow \pi^{\mp}(D\bar{D}^* + \bar{D}D^*)^{\pm}$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0(\pi^0 J/\psi)$
- $e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0 \to \pi^0 (D\bar{D}^* + \bar{D}D^*)^0$

(2) The J^{PC} is conclusively 1^{+-} .

(3) Similar structures have been found in related *Y*(4230) decays:

•
$$e^+e^- \rightarrow Y(4230) \rightarrow \pi^{\mp}Z_c(4020)^{\pm} \rightarrow \pi^{\mp}(\pi^{\pm}h_{\underline{c}})$$

•
$$e^+e^- \to Y(4230) \to \pi^{\mp}Z_c(4020)^{\pm} \to \pi^{\mp}(D^*\bar{D}^*)^{\pm}$$

•
$$e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0(\pi^0 h_c)$$

•
$$e^+e^- \to Y(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0 (D^*\bar{D}^*)^0$$

$\frac{\text{PRL 111, 242001 (2013)}}{\text{BESIII}}$ Observation of a Charged Charmoniumlike Structure $Z_c(4020)$ and Search for the $Z_c(3900)$ in $e^+e^- \rightarrow \pi^+\pi^-h_c$

(4) Presumably related to the $Z_c(3900)$, Z_{cs} states have also been found:

•
$$e^+e^- \to KZ_{cs} \to K(D_sD^* + D_s^*D)$$
 at BESIII

• $B \to \phi Z_{cs} \to \phi(KJ/\psi)$ at LHCb

(5) So far the $Z_c(3900)$ has only been seen in Y(4230) decays.

(III) Understanding the $Z_c(3900)$: The Global Program

(1) Study the $Z_c(3900)$ lineshapes in more detail (to distinguish between interpretations of the Z_c):

- perform multi-channel fits
- study the Z_c at multiple e^+e^- energies
- collect substantially more data at BESIII (and STCF in China?)

(2) Study similar features in bottomonium:

- $e^+e^- \to \pi^{\mp}Z_b(10610, 10650)^{\pm} \to \pi^{\mp}(\pi^{\pm}\Upsilon(1S, 2S, 3S))$
- $\bullet \ e^+e^- \to \pi^\mp Z_b(10610, 10650)^\pm \to \pi^\mp (\pi^\pm h_b(1P, 2P))$
- $e^+e^- \to \pi^{\mp}Z_b(10610)^{\pm} \to \pi^{\mp}(B\bar{B}^* + \bar{B}B^*)^{\pm}$
- $e^+e^- \rightarrow \pi^{\mp} Z_b (10650)^{\pm} \rightarrow \pi^{\mp} (B^* \bar{B}^*)^{\pm}$

(3) Compare the $Z_c(3900)$ to the set of Z_c seen in *B* decays:

- collect BESIII data with higher e⁺e⁻ energies

 (an upgrade in summer 2024 will raise the maximum energy
 to 5.6 GeV and increase the luminosity by a factor of 3)
- the STCF in China is planned to reach 7 GeV with a luminosity 50 times greater than BESIII

(III) Understanding the $Z_c(3900)$: The Global Program

(1) Study the $Z_c(3900)$ lineshapes in more detail (to distinguish between interpretations of the Z_c):

- perform multi-channel fits
- study the Z_c at multiple e^+e^- energies
- collect substantially more data at BESIII (and STCF in China?)

(2) Study similar features in bottomonium:

- $e^+e^- \to \pi^{\mp}Z_b(10610, 10650)^{\pm} \to \pi^{\mp}(\pi^{\pm}\Upsilon(1S, 2S, 3S))$
- $e^+e^- \to \pi^{\mp}Z_b(10610, 10650)^{\pm} \to \pi^{\mp}(\pi^{\pm}h_b(1P, 2P))$
- $e^+e^- \to \pi^{\mp}Z_b(10610)^{\pm} \to \pi^{\mp}(B\bar{B}^* + \bar{B}B^*)^{\pm}$
- $e^+e^- \rightarrow \pi^{\mp} Z_b (10650)^{\pm} \rightarrow \pi^{\mp} (B^* \overline{B}^*)^{\pm}$

(3) Compare the $Z_c(3900)$ to the set of Z_c seen in *B* decays:

- collect BESIII data with higher e⁺e⁻ energies

 (an upgrade in summer 2024 will raise the maximum energy
 to 5.6 GeV and increase the luminosity by a factor of 3)
- the STCF in China is planned to reach 7 GeV with a luminosity 50 times greater than BESIII

(III) Understanding the $Z_c(3900)$: The Global Program

(1) Study the $Z_c(3900)$ lineshapes in more detail (to distinguish between interpretations of the Z_c):

- perform multi-channel fits
- study the Z_c at multiple e^+e^- energies
- collect substantially more data at BESIII (and STCF in China?)

(2) Study similar features in bottomonium:

- $e^+e^- \to \pi^{\mp}Z_b(10610, 10650)^{\pm} \to \pi^{\mp}(\pi^{\pm}\Upsilon(1S, 2S, 3S))$
- $e^+e^- \to \pi^{\mp}Z_b(10610, 10650)^{\pm} \to \pi^{\mp}(\pi^{\pm}h_b(1P, 2P))$
- $e^+e^- \to \pi^{\mp}Z_b(10610)^{\pm} \to \pi^{\mp}(B\bar{B}^* + \bar{B}B^*)^{\pm}$
- $e^+e^- \rightarrow \pi^{\mp} Z_b (10650)^{\pm} \rightarrow \pi^{\mp} (B^* \bar{B}^*)^{\pm}$

(3) Compare the $Z_c(3900)$ to the set of Z_c seen in *B* decays:

- collect BESIII data with higher e⁺e⁻ energies

 (an upgrade in summer 2024 will raise the maximum energy
 to 5.6 GeV and increase the luminosity by a factor of 3)
- the STCF in China is planned to reach 7 GeV with a luminosity 50 times greater than BESIII

(III) Understanding the $Z_c(3900)$: The Role of JLab 22 GeV

(1) The $Z_c(3900)$ could potentially be photoproduced through single pion exchange.

- the theoretical model for this process ought to be reliable (see Alessandro's talk)
- if the $Z_c(3900)$ is not found, this could (hopefully) provide important information about the nature of the $Z_c(3900)$

Conclusions and Outlook

Heavy quark meson spectroscopy has expanded tremendously over the last decade.

Discoveries are being made almost monthly by LHCb, BESIII, Belle/Belle II, CMS, ATLAS, etc.

LHC will soon increase statistics; BESIII will soon have an upgrade; Belle II is just starting; a super tau-charm factory (STCF) is potentially on the horizon, etc.

