NANJING UNIVERSITY

Craig Roberts ... <u>http://inp.nju.edu.cn/</u>

Grant no. 12135007

国家自然科学 基金委员会 National Natural Science Foundation of China

Revealing and Mapping EHM using High Luminosity and Energy

Emergence of Hadron Mass

> Standard Model of Particle Physics has one obvious mass-generating mechanism

= Higgs Boson ... impacts are critical to evolution of Universe as we know it

> However, Higgs boson is alone responsible for just ~ 1% of the visible mass in the Universe

EHM

- Proton mass budget ... only 9 MeV/939 MeV is directly from Higgs
- Evidently, Nature has another very effective mechanism for producing mass:

Emergent Hadron Mass (EHM)

✓ Alone, it produces 94% of the proton's mass —

 Remaining 5% is generated by constructive interference between EHM and Higgs-boson – proton mass budget

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

EHM+HB

Emergence of Hadron Mass - Basic Questions

- > What is the origin of EHM?
- Does it lie within QCD?
- What are the connections with ...
 - Gluon and quark confinement?
 - Dynamical chiral symmetry breaking (DCSB)?
 - Nambu-Goldstone modes = $\pi \& K$?
- What is the role of Higgs in modulating observable properties of hadrons?
 - Without Higgs mechanism of mass generation, π and K would be indistinguishable
- What is and wherefrom mass?

Proton and ho-meson mass budgets are practically identical

 π - and K-meson mass budgets are essentially/completely different

 \sim Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Lumin from those of proton and ho

3 (34)

GENESIS

Modern Understanding Grew Slowly from *Quicient* Origins

More than 40 years ago

Dynamical mass generation in continuum quantum chromodynamics, J.M. Cornwall, Phys. Rev. D **26** (1981) 1453 ... ~ 1070 citations

➤ Owing to strong self-interactions, gluon partons ⇒ gluon quasiparticles, described by a mass function that is large at infrared momenta

Truly mass from nothing An interacting theory, written in terms of massless gluon fields, produces dressed gluon fields that are characterised by a mass function that is large at infrared momenta

 ✓ QCD fact
 ✓ Continuum theory and lattice simulations agree

✓ *Empirical verification?*

QCD's Running Coupling

"Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity

(34)

EHM Basics

> Absent Higgs boson couplings, the Lagrangian of QCD is scale invariant

➤ Yet ...

- Massless gluons become massive
- A momentum-dependent charge is produced
- Massless quarks become massive
- > EHM is expressed in
 - EVERY strong interaction observable
- Challenge to Theory =

Elucidate all observable consequences of these phenomena and highlight the paths to measuring them

Challenge to Experiment =

Test the theory predictions so that the boundaries of the Standard Model can finally be drawn

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

THREE

k [GeV]

• $\beta = 2.13$ • $\beta = 2.25$ • $\beta = 2.37$

Beam Energy (GeV)	Fraction EHM mapped (%)
6	≈ 35
12	≈ 50
22	≈ 90

SCIENCE AT THE LUMINOSITY FRONTIER: JEFFERSON LAB AT 22 GEV

EHM at High Luminosity and Energy

Charting EHM

- > Proton was discovered 100 years ago ... It is stable; hence, an ideal target in experiments
- But just as studying the hydrogen atom ground state didn't give us QED, focusing on the ground state of only one form of hadron matter will not solve QCD
- > New era is dawning ... High energy + high luminosity

⇒ Science can move beyond the monomaniacal focus on the proton

- Precision studies of the structure of
 - Nature's most fundamental Nambu-Goldstone bosons ($\pi \& K$) will become possible
 - Baryon excited states
 - ✓ Baryons are the most fundamental three-body systems in Nature
 - ✓ If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.

EHM is <u>not</u> immutable

- its manifestations are manifold
- experience \Rightarrow each hadron reveals different facets
- One piece does not complete a puzzle

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

11 (34) Nucleon mass from a covariant three-quark Faddeev equation G. Eichmann *et al.*, Phys. Rev. Lett. 104 (2010) 201601

Faddeex Equation for Baryons

Structure of Baryons

- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain

Solution delivers **Structure of Baryons** Poincaré-covariant proton wave function

- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain
- > For many/most applications, diquark approximation to quark+quark scattering kernel is used
- > **Prediction**: owing to EHM phenomena, strong diquark correlations exist within baryons

A proton

- proton and neutron ... both scalar and axial-vector diquarks are present

- CSM prediction = presence of axialvector (AV) diquark correlation in the proton
- ✓ AV Responsible for \approx 40% of proton charge

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Lun

23 September 2019 - 27 September 2019

DIQUARK CORRELATIONS IN HADRON PHYSICS: ORIGIN, IMPACT AND EVIDENCE

Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularized QCD have provided strong indications that soft quarkquark (diquark) correlations play a crucial role in hadron physics.

- > Theory predicts experimental observables that would constitute unambiguous measurable signals for the presence of diquark correlations.
- Some connect with spectroscopy of exotics
 - tetraquarks and pentaquarks
- Numerous observables connected with structure of conventional hadrons, e.g.
 - \checkmark existence of zeros in *d*-quark contribution to proton Dirac and Pauli form factors
 - ✓ Q^2 -dependence of nucleon-to-resonance transition form factors
 - \checkmark x-dependence of proton structure functions
 - ✓ deep inelastic scattering on nuclear targets (nDIS) ... proton production described by direct knockout of diquarks, which subsequently form into new protons

"Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity

Diquarks - Facts

Progress in Particle and

Review

Diquark correlations in hadron physics: Origin, impact and evidence

M.Yu. Barabanov¹, M.A. Bedolla², W.K. Brooks³, G.D. Cates⁴, C. Chen⁵, Y. Chen^{6,7}, E. Cisbani⁸, M. Ding⁹, G. Eichmann^{10,11}, R. Ent¹², J. Ferretti¹³ ⊠, R.W. Gothe ¹⁴, T. Horn ^{15, 12}, S. Liuti ⁴, C. Mezrag ¹⁶, A. Pilloni ⁹, A.J.R. Puckett ¹⁷, C.D. Roberts ^{18, 19} $\stackrel{>}{\sim}$ \boxtimes ... B.B. Wojtsekhowski ¹² \boxtimes

Nucleon axial-vector and pseudoscalar form factors and PCAC relations

Chen Chen (陈晨),^{1,2,3,4,*} Christian S. Fischer,^{3,4,†} Craig D. Roberts,^{5,6,‡} and Jorge Segovia,^{7,6,§} ¹Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China ²Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China ³Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany ⁴Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, D-35392 Gießen, Germany ⁵School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China ⁶Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China ⁷Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain

Nucleon axial form factor: $G_A(Q^2)$

- Parameter-free continuum quark+diquark prediction compared with up-to-date lattice result
- ✓ Mean χ^2 = 0.27
- ✓ Q^2 reach of continuum prediction is unlimited
 - ✓ Now have results to 10 GeV²
- ✓ "Precision" lattice result is constrained to the modest Q²-window shown
- ✓ Contribution dissection: 29% from $(I, J^P) = (1, 1^+)$ diquarks

8	$\langle J angle^S_{ m q}$	$\langle J angle_{ m q}^A$	$\langle J angle_{ m qq}^{AA}$	$\langle J angle_{ m qq}^{SA+AS}$	$\langle J angle_{ m ex}$	$\langle J angle_{ m sg}$
$G_A(0)$	$0.71_{4_{\pm}}$	0.0642+	0.0255+	0.13 _{0x}	0.072 ₃₂₊	0
$G_P(0)$	$0.74_{4_{\pm}}$	$0.070_{5_{+}}$	$0.025_{5_{+}}$	0.13 _{0_x}	$0.22_{4_{+}}$	-0.19 ₁
$G_{5}(0)$	0.74 ₄ ⁺	$0.069_{5_{\pm}}^{-}$	$0.025_{5_{\pm}}^{-}$	0.13 _{0_∓}	$0.22_{4_{\pm}}^{-}$	-0.19 _{1:}

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

(5)

Eur. Phys. J. A (2022) 58:206 https://doi.org/10.1140/epja/s10050-022-00848-x

Regular Article - Theoretical Physics

Check fo updates

Nucleon axial form factor at large momentum transfers

Chen Chen^{1,2,a}, Craig D. Roberts^{3,4,b}

¹ Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 230026, Anhui, China

² Peng Huanwu Center for Fundamental Theory, Hefei 230026, Anhui, China

³ School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China

⁴ Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, Jiangsu, China

Received: 26 June 2022 / Accepted: 4 October 2022

Large Q² Nucleon Axial Form Factor

- \blacktriangleright Parameter-free CSM predictions to $Q^2 = 10 m_p^2$
- One other calculation, viz. LCSRs using different models for proton DA ... Only available on $Q^2 > 1 m_p^2$
- \succ CSM prediction agrees with available data: small & larger Q^2
- ➤ Larger Q² data from CLAS [K. Park *et al.*, Phys. Rev. C 85 (2012) 035208], threshold pion electroproduction, extends $Q^2 \approx 5 m_p^2$

This technique could be used to reach higher Q^2

- ✓ Regarding oft-used dipole Ansatz,
 - ✓ Fair representation of $G_A(x)$ on $x \in [0, 3]$ = fitting domain $\overset{\frown}{\underset{0}{\overset{\bullet}{3}}} 0$.
 - But outside fitted domain, quality of approximation deteriorates quickly
 - ✓ dipole overestimates true result by 56% at x = 10

Large Q² Nucleon Axial Form Factor

- Light-front transverse density profiles
- Omitting axialvector diquarks
 - ✓ magnitude of the d quark contribution to GA is just 10% of that from the u quark
 - ✓ d quark is also much more localized $r_{A_d}^{\perp} \approx 0.5 r_{A_u}^{\perp}$
- Working with realistic axialvector diquark fraction
 - ✓ d and u quark transverse profiles are quite similar

$$r_{A_d}^{\perp} \approx 0.9 \; r_{A_u}^{\perp}$$

Proton Spin Structure

- Flavour separation of proton axial charge
- d-quark receives large contribution from probe+quark in presence of axialvector diquark

$$\circ \frac{g_A^d}{g_A^u} = {}^{0^+ \& 1^+} -0.32(2)$$

$$\circ \frac{g_A^a}{g_A^u} = {}^{0^+ \text{ only }} -0.054(13)$$

Table 1 Diagram and flavour separation of the proton axial charge: $g_A^u = G_A^u(0), g_A^d = G_A^d(0); g_A^u - g_A^d = 1.25(3)$. The listed uncertainties in the tabulated results reflect the impact of $\pm 5\%$ variations in the diquark masses in Eq. (3), $e.g. \ 0.88_{6_{\mp}} \Rightarrow 0.88 \mp 0.06$.

$\langle J \rangle^S_{\mathrm{q}}$	$\langle J \rangle_{ m q}^A$	$\langle J \rangle_{\rm qq}^{AA} \langle J \rangle_{\rm qq}^{\{SA\}}$	$\langle J \rangle_{\rm ex}^{SS}$	$\langle J \rangle_{\rm ex}^{\{SA\}}$	$\langle J \rangle_{\mathrm{ex}}^{AA}$
$ g^{u}_{A} = 0.88_{6_{\pm}}$	$-0.08_{0_{+}}$	$0.03_{0_{+}}0.08_{0_{\pm}}$	0	≈ 0	$0.03_{\pm 1}$
$-g^{\overline{d}}_{A} \mid 0$	$0.16_{0\pm}$	$0 0.08_{0_{\mp}}$	$0.05_{1\pm}$	≈ 0	0.01 ± 0

Probability that scalar diquark only picture of proton is consistent with data = 1/7,100,000

- ► Experiment: $\frac{g_A^a}{g_A^u} = {}^{0^+ \& 1^+} 0.27(4) \Leftarrow$ strong pointer to importance of AV correlation
- → Hadron scale: $g_A^u + g_A^d (+g_A^s = 0) = 0.65(2) \Rightarrow$ quarks carry 65% of the proton spin
- Poincaré-covariant proton wave function: remaining 35% lodged with quark+diquark orbital angular momentum
- Extended to entire octet of ground-state baryons: dressed-quarks carry 50(7)% of baryon spin at hadron scale

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

Contact interaction analysis of octet baryon axialvector and pseudoscalar form factors, Peng Cheng (程鹏), Fernando E. Serna, Zhao-Qian Yao (姚照千) et al., NJU-INP 063/22, e-Print: 2207.13811 [hep-ph], Phys. Rev. D **106**,(2022) 054031

Parton Distribution Functions

Proton and pion distribution functions in counterpoint

- Today, despite enormous expense of time and effort, much must still be learnt before proton and pion structure may be considered understood in terms of DFs
- Most simply, what are the differences, if any, between the distributions of partons within the proton and the pion?
- The question of similarity/difference between proton and pion DFs has particular resonance today as science seeks to explain EHM
- How are obvious macroscopic differences between protons and pions expressed in the structural features of these two bound-states?

Figure 1: Left panel-A. In terms of QCD's Lagrangian quanta, the proton, p, contains two valence up (u) quarks and one valence down (d) quark; and also infinitely many gluons and sea quarks, drawn here as "springs" and closed loops, respectively. The neutron, as the proton's isospin partner, is defined by one u and two d valence quarks. *Right panel*-B. The pion, π^+ , contains one valence u-quark, one valence \bar{d} -quark, and, akin to the proton, infinitely many gluons and sea quarks. (In terms of valence quarks, $\pi^- \sim d\bar{u}$ and $\pi^0 \sim u\bar{u} - d\bar{d}$.)

Proton and pion distribution functions in counterpoint

Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130

- Symmetry-preserving analyses using continuum Schwinger function methods (CSMs) deliver hadron scale DFs that agree with QCD constraints
- > Valence-quark degrees-of-freedom carry all hadron's momentum at ζ_H : $\langle x \rangle_{u_p}^{\zeta_H} = 0.687$, $\langle x \rangle_{d_n}^{\zeta_H} = 0.313$, $\langle x \rangle_{u_\pi}^{\zeta_H} = 0.5$
- Diquark correlations in proton, induced by EHM

 $\Rightarrow u_V(x) \neq 2d_V(x)$

- Proton and pion valence-quark DFs have markedly different behaviour
 - $u^{\pi}(x; \zeta_H)$ is Nature's most dilated DF
 - i. "Obvious" because $(1 x)^2$ vs. $(1 x)^3$ behaviour & preservation of this unit difference under evolution
 - ii. Also "hidden" = strong EHM-induced broadening

Diquarks & Deep Inelastic Scattering

- The ratio of neutron and proton structure functions at large x is keen discriminator between competing pictures of proton structure
- > Example:
 - Only scalar diquark in the proton (no axial-vector): $\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{1}{4}$
 - No correlations in the proton wave function (SU(4) spin-flavour) $\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{2}{3}$
- Experiments have been trying to deliver reliable data on this ratio for fifty years!
- MARATHON a more-than ten-year effort, using a tritium target at JLab, has delivered precise results

D. Abrams, et al., Measurement of the Nucleon Fn2/Fp2 Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) in press.

FIG. 2: The F_2^n/F_2^p ratio plotted versus the Bjorken x from the JLab MARATHON experiment. Also shown are JLab Hall B BoNuS data [56], and a band based on the fit of the SLAC data as provided in Ref. [46], for the MARATHON kinematics $[Q^2 = 14 \cdot x \text{ (GeV}/c)^2]$ (see text). All three experimental data sets include statistical, point to point systematic, and normalization uncertainties.

Neutron/Proton structure function ratio

- Ratio 1⁺/0⁺ diquarks in proton wave function is measure of EHM
- Structure function ratio is clear window onto $d_V(x)/u_V(x)$

 $\frac{F_2^n(x;\zeta)}{F_2^p(x;\zeta)} = \frac{\mathcal{U}(x;\zeta) + 4\mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}{4\mathcal{U}(x;\zeta) + \mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}$

 $U(x;\zeta) = u(x;\zeta) + \bar{u}(x;\zeta), D(x;\zeta) = d(x;\zeta) + \bar{d}(x;\zeta)$ $\Sigma(x;\zeta) = s(x;\zeta) + \bar{s}(x;\zeta) + c(x;\zeta) + \bar{c}(x;\zeta)$

Comparison with MARATHON data

[D. Abrams, *et al.*, Measurement of Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) *in press*]

Agreement with modern data on entire x-domain – parameter-free prediction

Walence quark ratio in the proton, Zhu-Fang Cui, (崔著钫), Fei Gao (高飞), Daniele Binosi, Lei Chang (常雷), Craig D. Roberts and Sebastian M. Schmidt, <u>NJU-INP 049/21</u>, e-print: <u>2108.11493</u>
[hep-ph], Chin. Phys. Lett. Express **39** (04) (2022) 041401/1-5: <u>Express Letter</u>

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

- CSM prediction = presence of axialvector diquark correlation in the proton
- ✓ Responsible for ≈ 0. 40% of proton charge

Probability that scalar diquark only models of nucleon might be consistent with available data is 1/141,000

LALA

Baryon Structure

- ➢ Poincaré covariance ⇒ irrespective of quark model assignments $n^{2s+1}\ell_J$, every hadron contains orbital angular momentum, e.g.,
 - π contains two S-wave components and two P-wave components
 - Few systems are simply radial excitations of another
- > No separation of J into L + S is Poincaré invariant
 - Consequently, e.g., negative parity states are <u>not</u> simply orbital angular momentum excitations of positive parity ground states
- In quantum field theory, there is no direct connection between parity and orbital angular momentum
 - Parity is a Poincaré invariant quantum number
 - L is not Poincaré invariant = value depends on the observer's frame of reference
- QCD structure of hadrons mesons and baryons is far richer than can be produced by quark models, relativized or not
 - Baryons are the most fundamental three-body systems in Nature
 - If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.
 Ig Roberts: cdroberts@nju.edu.cn_425 "Revealing and Mapping EHM using High-Energy and Luminosity"

Composition of low-lying $J = \frac{3^{\pm}}{2} \Delta$ -baryons

Poincaré-covariant quark+diquark Faddeev equation

 \Rightarrow insights into the structure of four lightest $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$ baryon multiplets.

Prediction: Whilst these systems can contain isovector-axialvector (1,1⁺) and isovector-vector (1,1⁻) diquarks, one may neglect the latter and still arrive at a reliable description.

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

Rest-frame angular momentum decompositions

29

(34)

Composition of low-lying $J=\frac{3}{2}^{\pm} \Delta$ -baryons

Poincaré-covariant quark+diquark Faddeev equation

 \Rightarrow insights into the structure of four lightest $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$ baryon multiplets.

Prediction: Whilst these systems can contain isovector-axialvector (1,1⁺) and isovector-vector (1,1⁻) diquarks, one may neglect the latter and still arrive at a reliable description.

Composition of low-lying $J=\frac{3^{\pm}}{2} \Delta$ -baryons

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

Rest-frame angular momentum decompositions

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Synergy of Experiment, Phenomenology, Theory

- > Drawing detailed map of the proton is important because proton is Nature's only absolutely stable bound state.
 - ✓ However, while QCD is the proton, the proton is not QCD
- Strong interaction theory is maturing
 - ✓ Expanding array of parameter-free predictions for the proton yes
 - ✓ And all the other hadrons whose properties express the full meaning of QCD
- Understanding how QCD's simplicity explains the emergence of hadron mass and structure requires investment in a facility that can deliver precision data on much more than one of Nature's hadrons.
- > An energy-upgraded Jlab complex is the only envisaged facility that could ...
 - ✓ Deliver precise structure data on a wide range of hadrons with distinctly different quantum numbers
 - ✓ Thereby move Science into a new realm of understanding.

Gather all pieces of the puzzle ... Reveal the source of Nature's basic mass-scale

Emergent Hadron Mass

- > QCD is unique amongst known fundamental theories of natural phenomena
 - Degrees-of-freedom used to express the scale-free Lagrangian are not directly observable
 - Massless gauge bosons become massive, with no "human" interference
 - Gluon mass ensures a stable, infrared completion of the theory through appearance of a running coupling that saturates at infrared momenta, being everywhere finite
 - Massless fermions become massive, producing
 - Massive baryons and simultaneously Massless mesons
- > Emergent features of QCD are expressed in every strong interaction observable
- They can also be revealed via
 - EHM interference with Nature's other known source of mass = Higgs
- High energy and high luminosity facilities are the key to validating these concepts proving QCD to be 1st well-defined four-dimensional quantum field theory ever contemplated
- > This may open doors that lead far beyond the Standard Model

Grant no. 12135007

Emergent Hadron Mass

- > QCD is uniq There are theories of many things,
 - servable - Degrees But is there a theory of everything?
 - Gluon mass ensures a st running coupling that sa
 - Massless fermions become massive, producing
 - Massive baryons and simultaneously Massless mesons
- Emergent features of QCD are expressed in every strong interaction observable
- They can also be revealed via
 - EHM interference with Nature's other known source of mass = Higgs
- High energy and high luminosity facilities are the key to validating these concepts proving QCD to be 1st well-defined four-dimensional quantum field theory ever contemplated
- This may open doors that lead far beyond the Standard Model

Craig Roberts: cdroberts@nju.edu.cn_425 "Revealing and Mapping EHM using High-Energy and Luminosity"

theory through appearance of a

ing everywhere finite

There are theories of many things, But is there a theory of everything?

Nature

Craig Roberts: cdroberts@nju.edu.cn 425 "Revealing and Mapping EHM using High-Energy and Luminosity"

hankyou