The 22 GeV Luminosity Frontier: Theory Perspective

Jianwei Qiu Theory Center

Presented To: Jefferson Lab at 22 GeV Workshop

January 23, 2023

QCD: a theory of quarks & gluons

$$\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f} -\frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$$

But, we saw none of them in isolation

Emergent phenomena:

- Hadrons spectroscopy
- Hadron properties mass, spin, ...
- Hadron structure quark/gluon's confined motion, spatial distributions, quantum correlations, ...

Hadron structure

QCD: a theory of quarks & gluons $\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f} - \frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$

But, we saw none of them in isolation

Emergent phenomena:

- Hadrons spectroscopy
- Hadron properties mass, spin, ...
- Hadron structure quark/gluon's confined motion, spatial distributions, quantum correlations, ...

Hadron structure

Nuclear structure

QCD: a theory of quarks & gluons

$$\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f} - \frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$$

But, we saw none of them in isolation

Dual representations – probing scale:

- fundamental quarks, gluons & their interactions
- hadrons & their effective interactions nuclear structure

in terms of nucleons, mesons, ... in terms of fundamental quarks, gluons in terms of constituent quarks, ...

Emergent phenomena:

- Hadrons spectroscopy
- Hadron properties mass, spin, ...
- Hadron structure quark/gluon's confined motion, spatial distributions, quantum correlations, ...

Hadron structure

Calculation & Prediction for the emergent phenomena

LQCD, EFTs, Models, ...

Nuclear structure

QCD: a theory of quarks & gluons

$$\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f} - \frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$$

But, we saw none of them in isolation

Dual representations – probing scale:

- fundamental quarks, gluons & their interactions
- hadrons & their effective interactions nuclear structure

in terms of nucleons, mesons, ... in terms of fundamental quarks, gluons in terms of constituent quarks, ... Extraction & "Understanding" of the emergent phenomena PQCD factorization from Expt'l data, from LQCD data, ...

> Challenge to understand the extracted phenomena?

How such rich phenomena are emerged from quarks, gluons & QCD dynamics?

See talk by Rolf

CEBAF: a facility for exploring emergent phenomena in QCD

Calculation & Prediction for the emergent phenomena

LQCD, EFTs, Models, ...

Nuclear structure

Emergent phenomena:

- Hadrons spectroscopy
- Hadron properties mass, spin, ...
- Hadron structure quark/gluon's confined motion, spatial distributions, quantum correlations, ...

Dual representations – probing scale:

- fundamental quarks, gluons & their interactions
- hadrons & their effective interactions nuclear structure

in terms of nucleons, mesons, ... in terms of fundamental quarks, gluons in terms of constituent quarks, ...

Hadron structure

Extraction & "Understanding" of the emergent phenomena

PQCD factorization from Expt'l data, from LQCD data, ...

Challenge to understand the extracted phenomena?

How such rich phenomena are emerged from quarks, gluons & QCD dynamics?

Adding FFA racetracks into the existing CEBAF tunnel to reach the top energy of about 22 GeV

- What are NEW science opportunities for CEBAF and nuclear physics community, even with the EIC?
- How can we catch and fully realize such opportunities, if there are, in a cost-effective way?

7

Discover new Charmonium states (X, Z_c) at a lepton-hadron facility

XYZ states:

Charmonium-like (bottomonium-like) exotic mesons

Belle II + BESIII + LHCb:

Many more XYZ states will be discovered and confirmed before the CEBAF upgrade and EIC turns on

But, none of these will be produced in photon/lepton-hadron collisions

Discover new Charmonium states (X, Z_c) at a lepton-hadron facility

XYZ states:

Charmonium-like (bottomonium-like) exotic mesons

Belle II + BESIII + LHCb:

Many more XYZ states will be discovered and confirmed before the CEBAF upgrade and EIC turns on

But, none of these will be produced in photon/lepton-hadron collisions

CEBAF with energy upgrade – discovery potential:

Emergence of a heavy quarkonium & XYZ states

J/psi was discovered in 1974:

Still not sure how a J/psi was emerged from high energy collisions, ...

NRQCD for hadronization:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \langle \mathcal{O}^{H}(n) \rangle$$

• 4 leading channels in v:

$${}^{3}S_{1}^{[1]}, \; {}^{1}S_{0}^{[8]}, \; {}^{3}S_{1}^{[8]}, \; {}^{3}P_{J}^{[8]}$$

	$egin{array}{l} \langle {\cal O}(^3S_1^{[1]}) angle \ { m GeV}^3 \end{array}$	$\langle {\cal O}(^1S_0^{[8]}) angle \ 10^{-2}{ m GeV}^3$	$\langle {\cal O}(^3S_1^{[8]}) angle \ 10^{-2}{ m GeV}^3$	$\frac{\langle {\cal O}({}^3P_0^{[8]})\rangle}{10^{-2}{\rm GeV}^5}$
Set I (Butenschoen <i>et al.</i>)	1.32	3.04	0.16	-0.91
Set II (Chao et al.)	1.16	8.9	0.30	1.26
Set III (Gong <i>et al.</i>)	1.16	9.7	-0.46	-2.14
Set IV (Bodwin et al.)	-	9.9	1.1	1.1

LDMEs should be universal, however:

- Numbers are not the same,
- Not even the sign!

Having XYZ produced in photon/lepton-hadron environment is necessary for exploring their emergence:

Coupling photons to exotics, polarization transfer, ... Science at the Luminosity Frontier

CEBAF with HE is a new facility for charmonium production

HE @ 22 GeV:

New facility for charmonium production – away from the threshold

HE: Precision charmonium production beyond the threshold:

- Trace anomaly
- Gravitational form factors
- Proton mass radius
- Proton radius of quark, or gluon density,

...

New facility for charmonium production – away from the threshold

h'(p')

Science at the Luminosity Frontier

- Trace anomaly
- Gravitational form factors
- Proton mass radius
- Proton radius of quark, or gluon density,

 J/ψ Photoproduction

Large と and small -t $A^*(p_1 = p - p')$ A virtual state of multi-"partons" or "mesons" Need the phase space - the energy upgrade! See talks in session 3 Jefferson Lab

13

3D Imaging in Momentum Space

NO quarks and gluons can be seen in isolation!

- Need new observables with two distinctive: scales:
 - $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$
 - Hard scale: Q1 to localize the probe to see the particle nature of quarks/gluons
 - "Soft" scale: Q₂ could be more sensitive to the hadron structure ~ 1/fm

3D Imaging in Momentum Space

NO quarks and gluons can be seen in isolation!

If the proton is broken, e.g., in SIDIS, ...

Transverse momentum broadening:

$$\Delta k_T^2 \propto \Lambda_{\rm QCD}^2 \times \alpha_s(C_F, C_A) \times \log(Q^2/\Lambda_{\rm QCD}^2) > 1 \times \log(s/Q^2)$$

• Measured k_{τ} is NOT the same as k_{τ} of the intrinsic confined motion!

Structure information vs. collision effects

Science at the Luminosity Frontier

Structure information is diluted by the collision induced shower!

Challenge for extracting the "True" Hadron Structure – example

Challenge to separate "true" hadron structure from "collision effects":

- Drell-Yan type (W/Z, H⁰): Q >> q_T (two scales)
- Parton shower develops when hadron broken
- Parton k_T probed at the hard collision is NOT the same as the intrinsic "confined motion" in a hadron
- The difference is encoded in QCD evolution
- Two-scale evolution *is different* from DGLAP!

Challenge for extracting the "True" Hadron Structure – example

Challenge to separate "true" hadron structure from "collision effects":

- Drell-Yan type (W/Z, H⁰): Q >> q_T (two scales)
- Parton shower develops when hadron broken
- Parton k_T probed at the hard collision is NOT the same as the intrinsic "confined motion" in a hadron
- The difference is encoded in QCD evolution
- Two-scale evolution *is different* from DGLAP!
- Structure information could be easily washed out in high energy collisions: $f(x_b, k_T, \mu, \zeta_b)$

Challenge for extracting the "True" Hadron Structure

Extracting hadron structure needs data with sufficiently large Q², but, not too large S

Science at the Luminosity Frontier

celerator Facility

3D Imaging in Momentum Space – Impact

Spin-averaged TMD - up quark:

Matteo Cerutti, ECT* workshop, 9/28/2022

0.34

ator Facility

Simulated JLab data: $Q^2 > 1.4 \text{ GeV}^2$; 0.2 < z < 0.7; $P_{hT} < \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$ π^+

Impact on TMD parameter:

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$$

Width:
 $x(x) = N_{e} \frac{(1-x)^{\alpha} x^{\sigma}}{x^{\sigma}}$

$$g_1(x) = N_1 \frac{1}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

Science at the Luminosity Frontier

3D Imaging in Position Space

Jefferson Lab

DVCS & DVMP are not very sensitive to *x*-dependence of GPDs

• Amplitude nature: exclusive processes $\mathcal{M} \sim \int_{-1}^{1} \mathrm{d} \boldsymbol{x} F(\boldsymbol{x}, \xi, t) \cdot C(\boldsymbol{x}, \xi; Q/\mu)$

 $x \sim \text{loop momentum}$

At LO, DVCS hard coefficient factorizes

$$C(x,\xi;Q/\mu) = C_Q(Q/\mu) \cdot C_x(x,\xi) \propto \frac{1}{x-\xi+i\varepsilon} \cdots$$
$$i\mathcal{M} \propto \int_{-1}^1 \mathrm{d}x \, \frac{F(x,\xi,t)}{x-\xi+i\varepsilon} \equiv "F_0(\xi,t)"$$

x-dependence is only constrained by a "moment"

See talks in sessions 11-12

- Shadow GPDs:
 - $F_s(x,\xi,t)$

$$\int_{-1}^{1} dx \, \frac{F_s(x,\xi,t)}{x-\xi+i\varepsilon} = 0$$

GPDs with any shadow GPDs:

 $F(x,\xi,t) + F_s(x,\xi,t)$

Blue and dashed Fit the same CFFs ! PRD103 (2021) 114019

CEBAF with HE offers new opportunities for *x*-dependence of GPDs

Single-Diffractive Hard Exclusive Processes (SDHEP) can be sensitive to x-dependence of GPDs

elerator Facility

CEBAF with HE offers new opportunities for *x*-dependence of GPDs

23

- **Processes:** $\gamma(p_{\gamma}) + h(p) \rightarrow \pi^{\pm}(q_1) + \gamma(q_2) + h'(p')$
 - Hard scale is not given by a point like virtual photon
 - The qT (or angle) is sensitive to x-dependence of GPDs

QCD Factorization: $|q_{1T}| = |q_{2T}| \gg \sqrt{|t|} = \sqrt{|(p-p')^2|}$

Phenomenology:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}|t|\,\mathrm{d}\xi\,\mathrm{d}\cos\theta_{\pi}\,\mathrm{d}\phi_{\pi}} &= \frac{|\mathcal{A}|^{2}}{32\,s\,(2\pi)^{4}\,(1+\xi)^{2}} \\ \frac{1}{2}\,\overline{|\mathcal{A}|^{2}} &= \left(\frac{2\pi\alpha_{s}}{s}f_{\pi}\right)^{2}\left(\frac{C_{F}}{N_{c}}\right)^{2}\left(\frac{1+\xi}{\xi}\right)^{2}(1-\xi^{2}) \\ &\times \left[|O_{++}^{[\widetilde{H}]}|^{2} + |O_{+-}^{[\widetilde{H}]}|^{2} + |\widetilde{O}_{++}^{[H]}|^{2} + |\widetilde{O}_{+-}^{[H]}|^{2}\right] \end{aligned}$$

With flexible Pion DA + Simplified GK model for GPDs:

With factorized helicity amplitude:

เกิดและ ออกอาริดีก กละเอกละ Accelerator Facility

CEBAF with HE offers new opportunities for *x*-dependence of GPDs

DDVCS is sensitive to the x-dependence of GPDs – Needs luminosity & energy!

- More opportunities:
 - Diffractive plane
 - Exclusive hard scattering plane
 - Angular modulation between the two planes

Selection from different exchange state A* (or different GPDs)

It is the x-dependence of GPDs that allows us to calculate various moments of GPDs – total angular momentum, gravitational form factors (2nd moments), ...

Transverse momentum flow from the final-state lepton and the virtual photon is sensitive to the virtuality of the dilepton

$$q_2^2 = (2\xi P + q)^2 = (2\xi)2P \cdot q - Q^2 + \mathcal{O}(|t|)$$

$$\widetilde{q}^{2} = \left((x+\xi)P + q \right)^{2} \\ = \frac{Q^{2} + q_{2}^{2}}{2\xi} \left[x - \xi \left(\frac{1 - q_{2}^{2}/Q^{2}}{1 + q_{2}^{2}/Q^{2}} \right) \right] \rightarrow x - \xi \text{ as } q_{2}^{2} \rightarrow 0 \text{ DVCS}$$

Direct sensitive to external variable, q_2^2 , directly sensitive to q_T

PVDIS: Sea and strange quark distributions and more

Anti-shadowing – opportunity to solve a multi-decade mystery

Hard probes are localized in space, but, might be larger Lorentz-contracted colliding hadron:

In c.m. frame

Longitudinal probing size

> Lorentz contracted nucleon

if
$$\frac{1}{xp} > 2R\frac{m}{p}$$
 or $x < 0.1$

A hard probe at small-x can interact with multiple nucleons (partons from multiple nucleons) at the same impact parameter coherently

CEBAF with HE is ideal for exploring anti-shadowing regime:

- Hard probe with x in the anti-shadowing region is sensitive to the inter-nucleon distance in a nucleus
- Scattering off the pion cloud leading to too strong "anti-shadowing" – "old EMC effort"
- **Coherent multiple scattering leading to "Shadowing"**

Need a lepton-hadron facility to pin down the kinematics!

Origin of anti-shadowing?

Summary and outlook

CEBAF 20+ GeV upgrade is technically feasible – Opportunity

□ A very strong science case for such an upgrade is emerging:

- New charmonium states, so-called "XYZ states," could be discovered/studied at JLab – Fundamental question on how hadrons are emerged?
- Precision charmonium production near & beyond the threshold in lepton-hadron collisions

 as a precision probe of fundamental hadron properties and its tomography
- Open up a sweet region for determining the 3D structure intrinsic confined motion
 - Critically important for understanding how partons are confined in a bound hadron
- New opportunities for exploring 3D structure in position space x-dependence of GPDs
 - Tomography + moments of GPDs (gravitational form factors, angular momentum, ...)
- Ideal facility to explore the anti-shadowing phenomenon
 - a chance to solve the multi-decade mystery + look into the origin of nuclear force, ...
- New and unique opportunities to search for physics beyond SM
 - Did not cover

□ Capitalizing on past investment: We are obligated to explore new opportunity for CEBAF

Jefferson Lab

celerator Facility