# Axial Form Factor from Weak Capture of Polarized Positrons

Dipangkar Dutta Mississippi State University



# Measuring the electroweak current of a nucleon is one of the key tools for understanding nucleons in terms of the underlying quark & gluons.





vector current (EM structure)

Characterized by EM form factors ( $G_E$ ,  $G_M$ ); charge and magnetization distributions in the nucleon

### Axial electroweak charge is unique to the weak force



Characterized by Weak form factors ( $G_E^z$ ,  $G_M^z$ ,  $G_A$ ,  $G_P$ ); weak vector charge and magnetization distributions in the nucleon & axial charge distribution



# The vector electroweak form factors have been extensively studied using electron scattering

## constrained by charge conservation

$$\langle r_p^2 \rangle = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2 = 0}$$

Slope of form factor at Q<sup>2</sup> =0 give RMS radiii of distribution

PVES has been used to measure weak vector form factors

## vector current insensitive to details of QCD

Fig. from Alarcon & Weiss, PLB 784, 373 (2018)



### The axial current is more sensitive to QCD details but not as well known

Axial current characterized by the axial and induced pseudo scalar form factors  $[G_{A},(Q^2), G_{P}(Q^2)];$ 

Not directly accessible in e-scattering

Measured in  $\mu$  capture, quasi-elastic v scattering and low energy  $\pi$  production.

רס<sup><</sup>

### Measured only at low Q<sup>2</sup>, large uncertainties, very little info above $Q^2 > 1 \text{ GeV}^2$

Fig. from Bernard, Elouadrhiri & Missner, J. Phys. G 28, R1 (2002)





### The axial charge ( $g_A$ ) and rms axial radius (< $r_A$ ><sup>2</sup>) are fundamental weak interaction parameters.

 $G^{u-d}_{A}(Q^2=0) \to g_A$ 

**Necessary for neutrino oscillation experiments** for solar and reactor neutrino fluxes

 $\lambda = g_A/g_V$  is usually obtained from measurement of neutron beta decay correlation parameters A and a

But recently  $5\sigma$  differences between various measurements have arisen





$$\langle r_A^2 \rangle = -\frac{6}{g_{\rm A}} \frac{dG_A}{dQ^2}|_{Q^2=0}$$

### There are related puzzles arising from the >4 $\sigma$ differences in neutron lifetime ( $\tau_n$ ) and the CKM parameter V<sub>ud</sub>

### $\tau_n$ from bottle vs beam experiments differ by >4 $\sigma$ Vud from $0^+ \rightarrow 0^+$ super allowed decays vs from CKM unitarity differ by 4.4 $\sigma$



![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

in the axial radius ( $< r_A >^2$ )

Assuming a dipole form  $[1/(1 + Q^2/M_A^2)^2]$  for  $G_A(Q^2)$ ;  $\langle r_A^2 \rangle = 12/M_A$ 

![](_page_6_Figure_2.jpeg)

Current knowledge of the weak axial current is ripe for a new experimental technique with completely different systematics

### Different neutrino scattering experiments indicate possible large discrepancies

![](_page_6_Picture_7.jpeg)

This is an inverse beta decay process ( $\bar{e}^+ + {}^2H \rightarrow p + p + v_e$ )

![](_page_7_Picture_2.jpeg)

Cross section for right-handed positrons is strictly zero **Cross section increases with Q<sup>2</sup>** 

The capture of polarized positrons in deuterium is just such a new technique

![](_page_7_Figure_5.jpeg)

![](_page_7_Picture_8.jpeg)

### The cross section for 2-6 GeV positrons was calculated as part of early design possibilities for CEBAF

![](_page_8_Figure_2.jpeg)

W.-Y. P. Hwang, Phys. Rev. C33, 1370 (1986) Mintz et al., Int. J Mod. Phy. E6, 111 (1996)

### This is an inverse beta decay process ( $\bar{e}^+ + {}^2H \rightarrow p + p + v_e$ )

### Cross section for right-handed positrons is strictly zero

![](_page_8_Picture_7.jpeg)

### The cross section is dominated by the Axial form factor

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_3.jpeg)

0.1 - 1 GeV proton pairs @ 60 - 90 deg :  $Q^2 = 0.01 - 1 \text{ GeV}^2$ 

### Experiment would need a recoil detector for the proton pair operated in anti-coincidence with scattered positrons

![](_page_10_Figure_1.jpeg)

Needs a recoil detector and a small angle positron spectrometer/detector Solenoid around the target will control the load from Bhabha scattering. (capture only allowed for left handed positrons)

- The quasi-elastic scattered positrons have to be detected in time and vertex anti-coincidence with the proton pair.
- Positron polarization will also be used to distinguish between capture process and background processes.

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_9.jpeg)

![](_page_10_Picture_10.jpeg)

## is the largest background to the capture process.

![](_page_11_Picture_1.jpeg)

### Rates can be obtained from BoNuS12 data

To perform the measurement at 3 different beam energies we need ~100 days beam time

Quasi-elastic knockout of neutron followed by a charge exchange re-scattering,

Assuming a luminosity of 10<sup>36</sup> cm<sup>-2</sup>/s we get count rates of ~3 x10<sup>-4</sup>/s

QE scattering is  $\sim 10^{11}$  larger, if 0.01% of the QE event re-scatter to produce proton pairs and 0.01% of these are in vertex and time anti-coincidence, the background rate will be 0.3/s

### gives $S/B = 10^{-3}$

The capture process only occurs for left handed positrons

therefore the capture asymmetry = 0.1%

This asymmetry can be measured with an uncertainty of 3% with 30 days of beam time

![](_page_11_Picture_11.jpeg)

### The axial form factor can be extracted from the measured asymmetry

![](_page_12_Figure_1.jpeg)

Extrapolating to  $Q^2 = 0$ we can extract g<sub>A</sub>

and from the slope we can extract  $< r_A > 2$ 

each with a few % stat. uncertainty

# Summary

axial coupling  $g_A$  and the rms axial charge radius  $\langle r_A \rangle^2$ .

currently being developed for experiments at JLab.

several current puzzles.

- The weak capture of positrons in <sup>2</sup>H with a medium energy polarized positron beam, can provide a new and unique measurement of the  $Q^2$  dependence of  $G_A(Q^2)$ , the weak
- These measurements would use detection techniques that are already in use or
- The positron capture based measurement would have a completely different set of systematic uncertainties compared to all known methods and may help resolve

![](_page_13_Picture_7.jpeg)