HEP Software Foundation
2022 and towards 2023

Graeme Stewart, for the HSF Coordinators and Working Groups

Software and Computing Roundtable, 2023-01-17
HSF Organisation and Role

● The HSF exists to catalyze and enable common software efforts across high energy and nuclear physics
 ○ We do not own or allocate resources, so all work that is discussed is owned by those experiments/projects/teams
 ○ We are hugely grateful that people take the time to contribute to HSF and other community events and to share and grow their work in the wider context!

● **HSF Coordination**
 ○ Provides oversight and drives overall engagement

● **HSF Working Groups and Activity Areas**
 ○ Organising in key, focused topic areas for the field

● The HSF’s role is one of an information conduit and meeting point
 ○ Report on interesting and common work being done
 ○ Forum for technical comments and discussion
 ○ Encourage cooperation across experiments and regions
 ○ Motivate the publication of summary documents or papers for future use or reference
A More Normal Year…

- In 2022 we had a gradual easing of restrictions related to COVID-19
 - In person workshops and conferences could start to happen again from Spring 2022
 - E.g., ICHEP in July, ACAT in November
 - More people were able to travel and meet with colleagues
 - Experiments resumed many in-person events

- All of this helped re-introduce a much needed face-to-face / coffee time / beer dimension to activities
 - This is essential to the long term health of our community
 - Student activities are particularly valuable, e.g., the CERN summer student programme

- However, the world is not the same as it was before
 - Virtual participation is now accepted for almost all events
 - Balance costs vs. quality of interaction
 - We are aware of environmental costs of travel, so when we do fly, we should maximise the benefits

- The HSF (and partners) has always had a strong distributed dimension and we continue to benefit from that, backed up by in-person interaction
Community Advocacy

- We continued to advocate for software in the community, with several talks at conferences and events
 - The HEP Software Foundation, SMARTHEP kick-off workshop, 24 November 2022, Benedikt Hegner
 - Sustainability and future of software frameworks, JENA Symposium, 5 May 2022, Graeme A Stewart
 - HEP Software Foundation and Software Project R&D, SWIFT-HEP Meeting, 24 March 2022, Graeme A Stewart
 - Software and Computing R&D, 30th International Symposium on Lepton Photon Interactions at High Energies, 14 January 2022, Graeme A Stewart
- In addition, the HSF submitted several papers and LOIs to the US Snowmass process, particularly in the Computing Frontier
 - Many US HSF colleagues involved
- We regularly give input to the LHC Committee at CERN with WLCG (LHCC)
HSF Workshops and Events

We got started again with a rich programme of workshops in 2022, organised, in many cases, with other partners:

- HSF Detector Simulation on GPU Community Meeting
 - https://indico.cern.ch/event/1123314/
- Analysis Ecosystem II Workshop
 - https://indico.cern.ch/event/1123314/
- PyHEP 2022 Workshop
 - https://indico.cern.ch/event/1150631/
- HSF - IRIS-HEP Workshop on Software Citations
 - https://indico.cern.ch/event/1212344/
- Future Trends in Nuclear Physics Computing
 - https://indico.bnl.gov/event/15089/
- MC4EIC
 - https://indico.bnl.gov/event/17608/
Increasing interest in GPUs for running HEP workloads

- As these devices become more generally available at facilities can they be used for ‘generic’ HEP workloads?
- Simulation an obvious candidate in terms of its huge resource consumption

Two R&D projects in place

- AdePT - CERN and UK SwiftHEP
- Celeritas - ORNL

Meeting organised by AdePT, Celeritas, Geant4 and HSF

- Can we transform HEP particle transport to be efficient-enough on GPU?
- How much effort will it take to create a production-level tool?
- What level of changes would be required to port key elements of the user code of production experiment simulation?
Challenges

● GPUs like homogeneous workloads
 ○ Particle tracking in inherently stochastic and divergent

● GPU memory accesses should be uniform for efficiency
 ○ HEP geometries are traditionally indirected and hierarchical
 ○ Particle creation and killing needs new memory and creates holes, respectively

● Both projects presented their status in terms of
 ○ Physics
 ■ Tension between capabilities and divergence
 ○ Geometry and Magnetic Field
 ■ Geometry is a particular bugbear
 ○ Integration
 ■ How to write scoring code
 ○ Prospects
Project Status

- AdePT performance is comparable on similar costing CPU and GPU
- Performance drops a lot on realistic geometries
 - New geometry code in development (surface based)
- Celeritas performance very similar
 - This translates into about x40 increase in events per second on very GOU heavy nodes (HPC centres)

- Many ideas shared and good communication between projects
 - No code shared yet, but could happen at a later stage
- Foresee another status update meeting this year

Note that other simulation R&D goes on as well and will hand an impact, e.g., the sub-event parallelism project that the eAST application (JLab/BNL) will rely on and helps with scheduling.
HSF and IRIS-HEP Analysis Ecosystems Workshop

- **Workshop** held in hybrid mode at IJCLab
 - More than **70 people attended in person**
 - Held 5 years after the first workshop in Amsterdam

- **Focused on 6 key topics for analysis**
 - Analysis Facilities
 - ML tools and differentiable computing workflows
 - “Real-time” trigger-level analysis
 - Analysis User Experience and Declarative Languages
 - Analysis on reduced formats or specialist inputs
 - Metadata, bookkeeping and systematics handling

- **HL-LHC was one focus, but not the only one**
 - Run 3, Belle II, DUNE, ...
Topic Summaries

- **Analysis facility prototypes look fast enough now** (μs - ms per event)
 - AF focus now has to be on **ease of use** - for users and sites that deploy them
 - Many questions: scale-out, authentication, deployment complexity, user feedback, ...
 - Topics to be taken up in the [HSF Analysis Facilities Forum](#)

- **ML is much more widespread, becoming easier**, but still very dynamic; Autodiff is extremely interesting, but utility not yet established clearly
 - **Standard benchmarks** for performance will help

- User experience (UX) aims at reducing boilerplate and error prone/inefficient code
 - Do physicists need to do software engineering (and should they)? **There is training needed!**
 - **Bookkeeping and systematics remain pain points, as well as scale-out**
 - ROOT’s `.Vary()` points the correct way
 - **Interoperability** between different ecosystem pieces is inconsistent

- **Reduced formats must to be used** to scale (NanoAOD, PHYSLITE)
 - Also need to **support the other analyses** - custom formats, dedicated skims?
 - Augmentation can be improved to only add for selected events

- **Bookkeeping and systematics was discussed a lot in the UX context**
 - Metadata paper reviewers suggested follow-ups, to be discussed in HSF
 - **Systematics challenge proposed**
Workshop Outcomes

● A few personal observations
 ○ Having an in-person event was extremely productive
 ■ Lots of opportunity for follow-on discussions and making contact with new people
 ○ We agreed that there is one HEP analysis ecosystem
 ■ ROOT and Scikit-HEP are both there and both highly engaged

● Workshop conclusions available on both Zenodo and arXiv [2212.04889]
 ○ Make columnar analysis easier with object facades
 ○ Tool interoperability should be strived for and used as a basis for training/onboarding
 ○ Open datasets are critical for performance evaluations (e.g. for ML models)
 ○ Metadata matters should be followed up at a dedicated workshop next year
 ○ Systematic uncertainties remain a major pain point for analysts - want common tools to make this easier and show how to use them in multiple experiments
 ○ Analysis facility work should continue, aiming to deliver an evaluation of solutions
 ■ We have a very active group, The Analysis Facilities Forum, tracking specifically this topic and working closely with colleagues in, e.g., the IRIS-HEP Analysis Grand Challenge
PyHEP 2022

- PyHEP workshop series started 2018, bring together developers and users of Python packages in HEP
 - Recognising both the opportunity afforded by Python based data science tools and the needs to smoothly interface to create a coherent ecosystem (i.e. Analysis Ecosystem)
- First two workshops were in-person, ~70 people
- From 2020 the workshop, of necessity, went online
 - We hit an amazing vein of enthusiasm, with 1000 people registering
 - Many, many students, keen to learn and we introduced more didactic elements
- In 2022, again online: healthy integrated turnout of 420 though the week
 - But less than the 1000 who registered - free online events have low commitment, post-pandemic phase, so more in-person commitments for people?
 - Tried some novel forms of engagement: Remotely Green networking event and a ‘hackashop’ to encourage new developers
PyHEP2022 Highlights

- Will hold the virtual PyHEP general workshop again this year
- However, want to have a developer focused in-person PyHEPdev event as well
HSF/IRIS-HEP Workshop: Software Citation and Recognition

- Workshop organised on **Software Citation and Recognition**
 - Review status of citation in HEP
 - Give credit to software developers and maintainers
 - Provide better and more sustainable software
 - Support for reproducibility

- Key principles developed by Force11 group
 - Importance, Credit and attribution, Unique identification, Persistence, Accessibility, Specificity
 - Group then had task forces which helped to develop
 - Citation Format File standard (CITATION.cff)
 - CodeMeta
 - Metadata standard for software, a richer description of software
What to cite?

- **An academic paper written about the software**
 - This is the traditional approach, currently giving the most academic credit
 - Some feedback from RSEs - at least a subset don’t like writing papers
 - There is a serious issue with ancestor papers picking up all citations
 - E.g., the 2003 Geant4 paper gets most citations - even though the code today is almost completely different and all the recent authors and contributors are missing

- **The software itself**
 - E.g., the Zenodo DOI
 - Not well rewarded academically
 - Does it describe why the software exists? The design choices?

- **A combination of the two**
 - E.g. the Journal of Open Source Software (**JOSS**)
 - Combining the code, plus a short paper describing the software
 - Code and repository is reviewed as well - has to meet best-practice standards like build instructions, basic tests, and user documentation
Citations and Recognition Outcomes

- **Developers**
 - If you want your software properly cited, put the citation everywhere...
 - In the README, in the documentation, on the distribution page (PyPI)
 - And make this a single source of truth!
 - Adopt a citation format file
 - CITATION.cff - first version can be easily generated via a [webpage](#)
 - Make sure you keep things up to date

- **Experiments**
 - Desire for consistency in citation recommendations - possibly curated by the HSF?

- **Zenodo / Inspire**
 - Better support for software citation coming this year, when automatically harvestable (e.g., from Zenodo INSPIRE HEP, CERN open data)
 - Will track citations ➔ credit for authors

- **Workshop conclusions in preparation now**
GSoC 2022

- We participated as an umbrella organisation again in GSoC
 - Programme improved last year: allowed to have short and long projects: 175 or 350 total coding hours

- Key numbers
 - 26 Organizations
 - 18 HSF projects
 - 27/41 proposals got a student (2/3)
 - 21/27 successful student projects
 - Record failure rate (22%)!
 - 2 withdrawn, 4 bad performance
 - Relaxed participation requirements (?)

- Student blogs available
GSoC 2023

● Same rules as for 2022, but even more open
 ○ Mix of medium (175 hours) and large (350 hours) projects
 ○ Flexible project duration
 ○ “Program open to students and to beginners in open source software development”

● Organization application deadline: February 7
 ○ We will need all project proposals by then!
 ○ A call for proposals will be made very soon

● CERN-HSF org admins
 ○ Benedikt Hegner + ?
 ■ Volunteers very welcome for this valuable task!
Training WG

Achievements unlocked:

- April 21-22: Matplotlib Training (indico)
- July 13-15: Software Carpentry Training (indico)
- July 25: Matplotlib Training Hackathon (indico)
- September 6: Containerization Training Hackathon (indico)
- Participation in ICHEP, PyHEP, Sustainable HEP conferences
- September 28-30: Software Carpentry Training (indico)
- October 11-13: Advanced C++ Training (indico)

Upcoming Quests:

- January 16-21: Analysis Preservation Training (indico)
- February 8-10: Software Carpentry training (indico)
- May 15-19: C++ Training - The American Edition @JLab (TBC)
Working Groups

- In addition to dedicated workshops and events we have many working groups and activity areas
 - Led by enthusiasts and advocates for common work and solutions
- These were active in 2022 and held many useful discussions in their field of expertise
 - See their [Indico categories](#) for more details on the meetings and topics covered

Working Groups

- Data Analysis
- Detector Simulation
- Frameworks
- Physics Generators
- PyHEP - Python in HEP
- Reconstruction and Software Triggers
- Software Developer Tools and Packaging
- HSF Training

Activity Areas

- Analysis Facilities Forum
- Conditions Databases
- Differentiable Computing
- Season of Docs
- Google Summer of Code
- intelligent Data Delivery Service
- Licensing
- Reviews
- Visualisation
Summary

● In 2022 HSF colleagues organised many events and discussions on important topics for High Energy and Nuclear Physics
 ○ Reinforcing the role of the HSF as a place where the community can gather for discussions and exchange of ideas
 ○ This feeds back into the work tackled by the software projects
 ○ We try to encourage diverse R&D, but also very practical solutions that deliver for the experiments

● In 2023 already look forward to another active year
 ○ A highlight will be the first in-person WLCG-HSF workshop since 2019, co-located with CHEP
 ○ Topics will be Analysis Facilities and Heterogeneous Computing