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Plethora of recent electron scattering results SRCs
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Scale & Probe Independence

of SRC Observables
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SCALE PROBE

Probing SRCs with large range of 

momentum transfer 


q (electrons) or t (photons)
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GCF relies on two 

factorization scales

300 MeV  Center-of-mass momentum≳

1 GeV  Relative momentum  300 MeV≳ ≳

Momentum transfer  1 GeV≳
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GCF relies on two 

factorization scales

σSRC ∼ K ⋅ σeN ⋅ S(pi, pspec)

S ∼ ∑
α

Cα
NN ⋅ n(pc.m.) ⋅ |ϕ(prel) |2
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S ∼ ∑
α

Cα
NN ⋅ n(pc.m.) ⋅ |ϕ(prel) |2

SRC ground state factorization 
[Momentum space]

pair abundance pair c.m. motion

(interaction with A-2)

relative 

motion 


(pair interaction)
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SRC ground state factorization 
[Momentum space]

Schmookler, Nature (2019)
Cohen, PRL (2018)

Schmidt, Nature (2020)

No tensor
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Scale & Probe Independence

of SRC Observables
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SCALE

• going from ~400 events to ~15000 
events (combined )4He, 12C, 40Ca

RGM@hallB (JLab) provides 

the best SRC statistics yet


(electron scattering)



Cherenkov
Time-of-Flight

BAND

Calorimeter

e– beam

Target

Tracker
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But, does it scale?

Work done by

Andrew Denniston 

(MIT)

4He

• going from ~400 events to ~15000 
events (combined )4He, 12C, 40Ca

RGM@hallB (JLab) provides 

the best SRC statistics yet


(electron scattering)
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But, does it scale?

Work done by

Andrew Denniston 

(MIT)

4He

4He

4He
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But, does it scale?

Work done by

Andrew Denniston 

(MIT)

4He 4He
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But, does it scale?

YES IT DOES!Work done by

Andrew Denniston 

(MIT)

4He 4He



Do we trust electrons?
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different reaction mechanisms 

can complicate interpretation 

of data
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GCF relies on two 

factorization scales

σSRC ∼ K ⋅ σeN ⋅ S(pi, pspec)

S ∼ ∑
α

Cα
NN ⋅ |ϕ(prel) |2 ⋅ n(pc.m.)
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is GCF factorization 

probe independent?

σSRC ∼ K ⋅ σeN ⋅ S(pi, pspec)

S ∼ ∑
α

Cα
NN ⋅ |ϕ(prel) |2 ⋅ n(pc.m.)

σ(γn → ρ−p)
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σSRC ∼ K ⋅ σeN ⋅ S(pi, pspec)

S ∼ ∑
α

Cα
NN ⋅ |ϕ(prel) |2 ⋅ n(pc.m.)

t = (pγ − pm)2

σ(γn → ρ−p)

should not change

is GCF factorization 

probe independent?



Many reactions avilable
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Motivation - Test of Foundamentals

� Using photoproduction we can test foundamental assumptions

� Different photoproduction reactions available

6
• charge exchange gives us easy access to pn 

pairs


•  invariant mass reconstruction helps reduce 
background (unlike channel)
ρ−

π−
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Advantages of 

photoproduction

ρ−

t = (pγ − pm)2

• Can occur through , , -channel 
exchanges


• final-state   has limited 
background


• Distinctive topology and exclusive 
detection helps to reduce 
background


•  provides clean channel 
for probing SRC structure

s t u

(π−π0pp)

(γn → ρ−p)

t = (pγ − pm)2

u = (pγ − pB)2
s = (pγ + pN)2



Photoproduction reaction mechanisms differ significantly 
from electron-scattering

• No substantial radiative effects


• Kinematics prefer parallel kinematics, not 
antiparallel


 Different effects of final-state interactions


• Different sensitivity to meson-exchange 
currents


• Less inelastic background

→

20

Missing

Missing



Experiment @ Hall D (JLab)
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• 10.8 GeV electron beam incident on 
diamond radiator


• Photon emitted via coherent 
bremsstrahlung; scattered electron tagged


• Real photon incident on nuclear targets: 
2H, 4He, 12C


• Final-state particles detected in large-
acceptance GlueX detector



Experiment @ Hall D (JLab)
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Target Days of Beam Luminosity 

(Eγ > 6 GeV)

Deuterium 4 18.0 nucleus · pb-1

Helium-4 10 16.7 nucleus · pb-1

Carbon-12 14 8.6 nucleus · pb-1



Downsides
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Protons

NIMA 987, 164807 (2021)

• limited momentum resolution  affects  reconstruction→ pmiss



Downsides
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• Bad detector resolution

Signal process:

γnp → ρ−pp

Largest Background

γA → π+π−π0p(X)

γ

p

p

ρ− → π−π0

γ

p

π−

π0

π+

• Background reactions



Diffractive pion production backround
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Forward diffractive pions

SRC knockout protons

Preliminary

Work done by 

Jackson R. Pybus (MIT)

Can’t 
separate 

SRCs from 
BG



Analysis on the light-front
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Nucleon in Nucleus

Parton in Hadron

Light-front variables mitigate 
resolution effects

Parton momentum fraction 


xB =
Q2

2pN ⋅ q
→

Eq − pz
q

EN − pz
N

Nucleon momentum fraction 


αN ≡ A
EN − pz

N

EA − pz
A

A

p

p

q



Pair breakup

Light-front  better resolution→
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Nucleon in Nucleus

Parton in Hadron

Parton momentum fraction 


xB =
Q2

2pN ⋅ q
→

Eq − pz
q

EN − pz
N

Low-momentum nucleon 
αN ∼ 1

Standing nucleon pair
α1 + α2 ≡ αCM ∼ 2

Nucleon momentum fraction 


αN ≡ A
EN − pz

N

EA − pz
A

A

p

p

q
Substantial 
background

Work done by 

Jackson R. Pybus (MIT)



SRC events more spread out but still clear in data
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Exclusive SRC breakup

Standing pair 
approximation

Preliminary
Diffractive 3-pion


background

Work done by 

Jackson R. Pybus (MIT)



Comparison with GCF calculations

• Diffractive background cut


• High relative momentum cut


• Cut on rho meson mass


• High momentum-transfer 


• Compare with GCF calculations

| t | , |u | > 1 GeV2
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Work done by 

Jackson R. Pybus (MIT)



Comparison with GCF calculations

• Diffractive background cut


• High relative momentum cut


• Cut on rho meson mass


• High momentum-transfer 


• Compare with GCF calculations

| t | , |u | > 1 GeV2
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Preliminary

Work done by 

Jackson R. Pybus (MIT)



Comparison with GCF calculations

• Diffractive background cut


• High relative momentum cut


• Cut on rho meson mass


• High momentum-transfer 


• Compare with GCF calculations

| t | , |u | > 1 GeV2
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Preliminary

Work done by 

Jackson R. Pybus (MIT)



t = (pγ − pm)2

u = (pγ − pB)2
s = (pγ + pN)2

Comparison with GCF calculations

• Diffractive background cut


• High relative momentum cut


• Cut on rho meson mass


• High momentum-transfer 


• Compare with GCF calculations

| t | , |u | > 1 GeV2
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σ ∼ K ⋅ σ(γn → ρ−p) ⋅ S(pi, precoil)

Work done by 

Jackson R. Pybus (MIT)



SRC Pair Opening Angle

• Reconstruct angle between initial-state 
neutron and spectator proton


• All nuclei show clear back-to-back 
correlation 

33

precoil

pmiss

γ
GCF

Work done by 

Jackson R. Pybus 

(MIT)



SRC Center-of-Mass Momentum
• Transverse component of center-of-mass 

momentum used to limit FSI and cross 
section effects


• General trend with A agrees with current 
measurements, but precise value needs to 
be extracted and compared
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σCM = 0 MeV

σCM = 100 MeV

(+ resolution)

σCM = 150 MeV

PreliminaryGCF
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GCF Input

Work done by 

Jackson R. Pybus (MIT)



Initial Neutron Momentum (Proxy)
• Initial neutron momentum sensitive to 

short-distance NN interaction


• Momentum distributions well-described


• Agreement with AV18 predictions similar to 
that for electron-scattering data
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PreliminaryAV18

GCF Input

N2LO

np, s = 0

pp, s = 0

np, s = 1

Work done by 

Jackson R. Pybus 

(MIT)



Recoil Proton Momentum
• Spectator momentum also well-

reconstructed but shows possible signs of 
rescattering 


• Calculation of FSI using cascade models 
can help identify regions of large FSI
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PreliminaryAV18

GCF Input

N2LO

np, s = 0

pp, s = 0

np, s = 1

Work done by 

Jackson R. Pybus 

(MIT)



Outlook
• Further study of systematics necessary to complete comparison to plane-

wave predictions


• Sensitivity to photoproduction cross section, understanding of FSI 
effects, impact of  and  cuts| t | |u |

37



Outlook

• Complementary  channel allows access to  pairs, enabling 
confirmation of isospin structure of SRCs (P. Sharp, GWU)


• Other ongoing projects: color transparency (B. Devkota, MSU) , neutron 
structure (B. Yu, Duke), medium modification (T. Kolar, TAU)

(ρ0pp) pp

38

• Further study of systematics necessary to complete comparison to plane-
wave predictions


• Sensitivity to photoproduction cross section, understanding of FSI 
effects, impact of  and  cuts| t | |u |



Conclusions
• New high-energy photonuclear data 

provides independent measure of 
nuclear SRC properties

39

γ

p

p

ρ− → π−π0



Conclusions

40

• Together with recent inverse 
kinematics results we are on a 
good path to confirm probe 
independence of SRC 
observables 

• New high-energy photonuclear data 
provides independent measure of 
nuclear SRC properties



Conclusions
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• New high-energy photonuclear data 
provides independent measure of 
nuclear SRC properties

• Good promises of scale 
independence with new high-
statistics data from HallB@JLab 

• Together with recent inverse 
kinematics results we are on a 
good path to confirm probe 
independence of SRC 
observables 



Backup Slides
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• Proton can be described as superposition 
of QCD Fock states:





• Bound proton is known to have some 
modified structure from EMC effect:





• Photoproduction channels have different 
sensitivity to proton Fock states


• Example: Comparing  with  gives 
access to  content of the proton

|proton⟩ = αPLC |PLC⟩ + α3qg |3qg⟩ + α3qqq̄ |3qqq̄⟩ + . . .

|proton*⟩ = α*PLC |PLC⟩ + α*3qg |3qg⟩ + α*3qqq̄ |3qqq̄⟩ + . . .

π0 η
(ss̄)

Access to in-medium modification of photoproduction 
matrix elements

43

γ

B

m

p
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Access to in-medium modification of photoproduction 
matrix elements
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γ

p

π0, ηq
q̄}

A
(A − 1)*

• Proton can be described as superposition 
of QCD Fock states:





• Bound proton is known to have some 
modified structure from EMC effect:





• Photoproduction channels have different 
sensitivity to proton Fock states


• Example: Comparing  with  gives 
access to  content of the proton

|proton⟩ = αPLC |PLC⟩ + α3qg |3qg⟩ + α3qqq̄ |3qqq̄⟩ + . . .

|proton*⟩ = α*PLC |PLC⟩ + α*3qg |3qg⟩ + α*3qqq̄ |3qqq̄⟩ + . . .

π0 η
(ss̄)

p*



Access to in-medium modification of photoproduction 
matrix elements
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• Proton can be described as superposition 
of QCD Fock states:





• Bound proton is known to have some 
modified structure from EMC effect:





• Photoproduction channels have different 
sensitivity to proton Fock states


• Example: Comparing  with  gives 
access to  content of the proton

|proton⟩ = αPLC |PLC⟩ + α3qg |3qg⟩ + α3qqq̄ |3qqq̄⟩ + . . .

|proton*⟩ = α*PLC |PLC⟩ + α*3qg |3qg⟩ + α*3qqq̄ |3qqq̄⟩ + . . .

π0 η
(ss̄)

2H Data

Preliminary

Plane-Wave 
Calculations


