Probing nuclear short-range correlations with real photons at JLab

Tim Kolar GHP 2023, Minneapolis April 13, 2023

Plethora of recent electron scattering results SRCs

Plethora of recent electron scattering results SRCs

Scale & Probe Independence of SRC Observables PROBE

SCALE

Probing SRCs with large range of momentum transfer q (electrons) or t (photons)

GCF relies on two factorization scales

Momentum transfer $\gtrsim 1 \text{ GeV}$

1 GeV \gtrsim Relative momentum \gtrsim 300 MeV

300 MeV ≳ Center-of-mass momentum

GCF relies on two factorization scales

 $\sigma_{SRC} \sim K \cdot \sigma_{eN} \cdot S(p_i, p_{spec})$

 $S \sim \sum C_{NN}^{\alpha} \cdot n(p_{\text{c.m.}}) \cdot |\phi(p_{\text{rel}})|^2$ α

SRC ground state factorization [Momentum space]

RGM@hallB (JLab) provides the best SRC statistics yet (electron scattering)

• going from ~400 events to ~15000 events (combined ⁴He, ¹²C, ⁴⁰Ca)

Proton Momentum [GeV]

Work done by Andrew Denniston (MIT)

(electron scattering)

• going from ~400 events to ~15000 events (combined ⁴He, ¹²C, ⁴⁰Ca)

But, does it scale?

Proton Momentum [GeV]

Work done by Andrew Denniston (MIT)

 $0.55 GeV < p_{miss} < 0.7 GeV$

 $0.7 GeV < p_{miss} < 0.85 GeV$

But, does it scale?

Proton Momentum [GeV]

Work done by Andrew Denniston (MIT)

But, does it scale?

Work done by Andrew Denniston (MIT)

YES IT DOES!

Do we trust electrons?

different reaction mechanisms can complicate interpretation of data

GCF relies on two factorization scales

 $\sigma_{SRC} \sim K \cdot \sigma_{eN} \cdot S(p_i, p_{spec})$

 $S \sim \sum C_{NN}^{\alpha} \cdot |\phi(p_{\text{rel}})|^2 \cdot n(p_{\text{c.m.}})$ α

is GCF factorization probe independent?

 $\sigma(\gamma n \to \rho^- p)$ $\sigma_{SRC} \sim K \cdot \sigma_{eN} \cdot S(p_i, p_{spec})$ $S \sim \sum C_{NN}^{\alpha} \cdot |\phi(p_{\text{rel}})|^2 \cdot n(p_{\text{c.m.}})$ X

is GCF factorization probe independent?

 $\sigma(\gamma n \to \rho^- p)$ $\sigma_{SRC} \sim K \cdot \sigma_{eN} \cdot S(p_i, p_{spec})$ $S \sim \sum C_{NN}^{\alpha} \cdot |\phi(p_{\text{rel}})|^2 \cdot n(p_{\text{c.m.}})$ α

should not change

Many reactions avilable

- pairs
- background (unlike π^- channel)

charge exchange gives us easy access to pn

• ρ^- invariant mass reconstruction helps reduce

Advantages of $\rho^$ photoproduction

- Can occur through *s*, *t*, *u*-channel exchanges
- final-state $(\pi^{-}\pi^{0}pp)$ has limited background
- Distinctive topology and exclusive detection helps to reduce background
- $(\gamma n \rightarrow \rho^- p)$ provides clean channel for probing SRC structure

Photoproduction reaction mechanisms differ significantly from electron-scattering

- No substantial radiative effects
- Kinematics prefer parallel kinematics, not antiparallel
 - \rightarrow Different effects of final-state interactions
- Different sensitivity to meson-exchange currents
- Less inelastic background

Experiment @ Hall D (JLab)

- 10.8 GeV electron beam incident on diamond radiator
- Photon emitted via coherent bremsstrahlung; scattered electron tagged
- -DIRC
- Real photon incident on nuclear targets: ²H, ⁴He, ¹²C
- Final-state particles detected in largeacceptance GlueX detector

Experiment @ Hall D (JLab)

s of Beam	Luminosity (E _Y > 6 GeV)
4	18.0 nucleus · pb-1
10	16.7 nucleus · pb-1
14	8.6 nucleus · pb-1

Downsides

Diffractive pion production backround

Analysis on the light-front

Parton in Hadron

Parton momentum fraction $x_B = \frac{Q^2}{2p_N \cdot q} \rightarrow \frac{E_q - p_q^z}{E_N - p_N^z}$

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

V

I

Parton in Hadron

Nucleon in Nucleus

Work done by Jackson R. Pybus (MIT)

$$\alpha_N \equiv A \frac{E_N - p_A^2}{E_A - p_A^2}$$

Light-front \rightarrow better resolution

SRC events more spread out but still clear in data

- Diffractive background cut
- High relative momentum cut

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass
- High momentum-transfer $|t|, |u| > 1 \text{ GeV}^2$

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass
- High momentum-transfer $|t|, |u| > 1 \text{ GeV}^2$
- Compare with GCF calculations

Work done by Jackson R. Pybus (MIT)

 $\int \sigma \sim K \cdot \sigma(\gamma n \to \rho^- p) \cdot S(p_i, p_{recoil})$

- Reconstruct angle between initial-state neutron and spectator proton
- All nuclei show clear back-to-back correlation

SRC Center-of-Mass Momentum

- Transverse component of center-of-mass momentum used to limit FSI and cross section effects
- General trend with A agrees with current measurements, but precise value needs to be extracted and compared

Initial Neutron Momentum (Proxy)

²H(γ , ρ^-pp) 200 ⁴He(γ , ρ^-pp) 1000 500 1500 ¹²C($\gamma, \rho^- pp$) 1000 500 OF 0.4 0.8 1.2 0.6 1.0 *k_{miss}* [GeV]

- Initial neutron momentum sensitive to short-distance NN interaction
- Momentum distributions well-described
- Agreement with AV18 predictions similar to that for electron-scattering data

Recoil Proton Momentum

 ^{2}H N2LO 300 200 100 ⁴He 500 ^{12}C 1000 Work done by Jackson R. Pybus 500 (MIT) OF 400 1000 600 800 $p_{spectator}$ [MeV]

- Spectator momentum also wellreconstructed but shows possible signs of rescattering
- Calculation of FSI using cascade models can help identify regions of large FSI

Outlook

- wave predictions
- Sensitivity to photoproduction cross section, understanding of FSI effects, impact of |t| and |u| cuts

• Further study of systematics necessary to complete comparison to plane-

Outlook

- wave predictions
- Sensitivity to photoproduction cross section, understanding of FSI effects, impact of |t| and |u| cuts
- Complementary ($\rho^0 pp$) channel allows access to pp pairs, enabling confirmation of isospin structure of SRCs (P. Sharp, GWU)
- structure (B. Yu, Duke), medium modification (T. Kolar, TAU)

• Further study of systematics necessary to complete comparison to plane-

• Other ongoing projects: color transparency (B. Devkota, MSU), neutron

Conclusions

 New high-energy photonuclear data provides independent measure of nuclear SRC properties

Conclusions

- New high-energy photonuclear data provides independent measure of nuclear SRC properties
- Together with recent inverse kinematics results we are on a good path to confirm **probe** independence of SRC observables

Conclusions

- New high-energy photonuclear data provides independent measure of nuclear SRC properties
- Together with recent inverse kinematics results we are on a good path to confirm **probe independence** of SRC observables
- Good promises of scale
 independence with new highstatistics data from HallB@JLab

Backup Slides

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\text{proton}\rangle = \alpha_{PLC} |PLC\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\operatorname{proton}\rangle = \alpha_{PLC} |\operatorname{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3qg}^* |3qg\rangle + \alpha_{3qq\bar{q}}^* |3qq\bar{q}\rangle + \dots$

 Photoproduction channels have different sensitivity to proton Fock states

Access to in-medium modification of photoproduction matrix elements

• Proton can be described as superposition of QCD Fock states:

 $|\text{proton}\rangle = \alpha_{PLC} |\text{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

• Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3ag}^* |3qg\rangle + \alpha_{3ag\bar{q}}^* |3qq\bar{q}\rangle + \dots$

- Photoproduction channels have different sensitivity to proton Fock states
- Example: Comparing π^0 with η gives access to $(s\bar{s})$ content of the proton

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\operatorname{proton}\rangle = \alpha_{PLC} |\operatorname{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

 Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3qg}^* |3qg\rangle + \alpha_{3qq\bar{q}}^* |3qq\bar{q}\rangle + \dots$

- Photoproduction channels have different sensitivity to proton Fock states
- Example: Comparing π^0 with η gives access to $(s\bar{s})$ content of the proton

