

The sphenix Experiment at Rhic

for the sPHENIX Collabration

Weihu Ma

Fudan University Apr. 13, 2023

sPHENIX Science Mission

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

- ✓ sPHENIX will be the first new collider detector at RHIC in over twenty years;
- ✓ performing very high precision studies of jet production, jet substructure and open and hidden heavy flavor over an unprecedented kinematic range at RHIC;
- ✓ distinguished by high rate capability and large acceptance, combined with high precision tracking and electromagnetic and hadronic calorimetry.

sPHENIX Collaboration

NORTH RACIFIC OCEAN Encouraging diversity is a priority for our collaboration.
 Diversity, Equity, & Inclusion training will be a requirement for being an sPHENIX author.

- Replacement/upgrade of PHENIX. Proposed FRICA in 2010; collaboration formed in 2016.
- More than 360 members from 83 institutions in 14 countries as of 2023.
- Benefit from world-class expertise in physics, silicon, TPCs, calorimetry, electronics, computing, ...

Weihu Ma / c

sPHENIX Detector

- High data rates: 15 kHz for all subdetectors
- Trigger capability also with streaming readout
- 1.4T Solenoid from BaBar
- Hermetic coverage: $|\eta| < 1.1, 2\pi$ in φ
- Precision tracking
- Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!

support carriage

Weihu Ma

Tracking System

MAPS-based micro-VerTeX detector (MVTX)

- ✓ Based on ALICE Inner Tracking System (ITS).
- ✓ 3-layer Monolithic Active Pixel Sensors (MAPS).
- ✓ Excellent 2-D DCA resolution, < 10 μ m for p_T > 2 GeV/c
- ✓ Installation complete!

Intermediate Silicon Tracker (INTT)

- ✓ Two Barrels (four Layers) silicon strips
- ✓ Fast O(100 ns) integration time; can resolve one beam crossing.
- ✓ Installation complete!

MVTX

- ✓ 8 modules of Micromegas inserted between TPC and EMCal
- Calibration of beam-induced space charge distortions in the TPC
- ✓ Installation complete!

Time Projection Chamber (TPC)

INTT

- ✓ Compact
- ✓ Δp/p~1% at 5 GeV/c
- ✓ 48 layers (20-78 cm radius)
- Quad-GEM electron multiplier + chevron readout pads
- ✓ Gateless, continuous readout
- ✓ Installation complete!

TPOT

TPC

Tracking Performance

sPHENIX tracking performance

✓ Eff.~90% for pp at $p_T>1$ GeV. → promising to measure rare processes: e.g. Y(nS).

- ✓ DCA resolutions in r- ϕ , z < 40µm at p_T>0.5 GeV. → crucial for open heavy-flavor.
- ✓ p_T resolution < 2% for p_T < 10 GeV. → meets δ M < 125 MeV for Y(nS) separation.

Electromagnetic Calorimeter (EMCal)

Calorimeter System(EMCal+iHCal+ oHCal)

- ✓ Compact, coverage $|\eta| < 1.1$, 2π in ϕ
- ✓ SiPM readout for both EMCal and HCal
- $\checkmark\,$ Less-biased jet measurement
- ✓ All Calorimeters installation and electronics complete!

Electromagnetic Calorimeter (EMCal)

- ✓ Tungsten/scintillating fiber SPACAL
- ✓ ~7mm radiation length
- ✓ high granularity Δη x Δφ = 0.025 x 0.025
- ✓ Good energy resolution $\sigma_E/E \le 16\%/\sqrt{E}$
- ✓ Installation complete!

Hadronic Calorimeter (HCal)

Inner Hadronic Calorimeter (iHCal)

- ✓ Aluminum-scintillating tiles with embedded WLS fibers
- ✓ EM-shower tail catcher
- ✓ Installation complete!

Outer Hadronic Calorimeter (oHCal)

- ✓ Tilted steel plates/scintillator tiles with embedded WLS fibers
- ✓ Δη x Δφ = 0.1 x 0.1 towers
- ✓ Installation complete!

sEPD and MBD

sPHENIX Event Plane Detector (sEPD)

- Measure event plane and centrality outside of mid-rapidity
- ✓ 1.2-cm-thick scintillator with embedded WLS fibers
- ✓ 2 Wheels of 12 sectors with 31 optically-isolated tiles
- ✓ 2.0 < $|\eta|$ < 4.9
- ✓ Detector complete!

Minimum bias detector (MBD)

- Provide minimum-bias trigger with high efficiency for heavy ion collisions (>90%)
- Contributes to centrality, reaction plane, start time, and interaction vertex
- ✓ Reuse of the PHENIX BBC(Beam-Beam counter)
- ✓ 2x64 channels of 3 cm thick quartz radiator on mesh dynode PMT
- ✓ 3.51 < |η| < 4.61
- \checkmark 120 ps timing resolution
- ✓ Detector complete!

Detector Installation

- ✓ Magnet, OHCal, IHCal, EMCal, TPOT, TPC installed cabled and plumbed. Gas and water systems ready to operate!
- ✓ Beampipe installed.
- ✓ Magnet ready for cool down.
- $\checkmark\,$ Electronics racks ready to operate.
- ✓ Safety systems operational.

Weihu Ma

Run plan of sPHENIX

sPH-TRG 2020-002 sPHENIX Beam Use Proposal

sPHENIX Beam Use Proposal - Addendum for 20-Cryoweek Scenario

Summarv of sPHENIX Beam Use Proposal for the vears 2023–2025

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

• Year-1 (Au+Au): Commissioning, calibration, collection of a Au+Au data set.

• Year-2 (p+p & p+Au): Commissioning and p+p reference data & p+Au cold QCD Measurements.

 Year-3 (Au+Au): very large statistics data collection for jets and heavy flavor observables. Weihu Ma
 ¹¹
 GHP2023

4 Core Physics Programs @ sPHENIX

High-p_T Probes

Probing the QGP with precise jet, direct photon, and hadron measurements

✓ High data rates & hermetic EMCal+HCal offer wide p_T range for jet reconstruction.

✓ sPHENIX can precisely measure the low p_T region, which is challenging at the LHC.

 \checkmark sPHENIX will have kinematic reach out to \sim 70 GeV for jets, kinematic overlap with the LHC.

Jet Physics

- ✓ A "flagship" measurement.
- ✓ Photon+jet measurements with high statistics.
- ✓ A direct measure of the jet energy loss.

 ✓ Jet substructure measurements thanks to the fine segmentation of calorimeter + good tracking resolution.

- ✓ Study evolution of parton shower.
- Providing a glimpse into fundamental splittings at parton level.
 GHP2023

14

b-Jet Physics

- ✓ First b-jet tagging at RHIC using precision-DCA track and secondary vertices tagger.
- ✓ b-tagging dramatically reduces the "fake" jet background.
- ✓ sPHENIX data will place stringent constraints on the b-quark coupling to the QGP.
- ✓ Back-to-back heavy-flavor jet pairs studying the propagation of quarks in the QGP.

Weihu Ma

Open Heavy Flavor

- \checkmark Cleanly separate open bottom via DCA.
- ✓ Study mass dependence of energy loss and collectivity.
- ✓ Bottom quarks and light quarks are expected to be different for R_{AA} and v_2 for $p_T \lesssim 15$ GeV.

Upsilon R_{AA}

- Suppression with clear distinction of three Upsilon states. Color dipoles probing the QGP at three length scales.
- ✓ The centrality dependence and particularly the p_T dependence are critical measurements for comparison between RHIC and the LHC.

 $\checkmark\,$ Signal enhancement with ML tools (BDT) is expected.

Cold QCD

- ✓ Study of nuclear modifications using unpolarized p+Au measurements.
- ✓ Provide information on the nuclear modification of hadronization processes.
- ✓ Sensitive to the CNM effects.

- ✓ Spin measurements such as transverse single spin asymmetry (TSSA) can be achieved using the beam polarization.
- $\checkmark\,$ Study the nucleon spin structure and parton dynamics.

Weihu Ma

Summary

- ✓ sPHENIX is the first new detector at RHIC in >20 years.
- ✓ sPHENIX enable new measurements of the microscopic nature of QGP.
- ✓ Large and hermetic electromagnetic and hadronic calorimetry.
- ✓ Highly precise tracking.
- $\checkmark\,$ High DAQ and trigger rate.
- $\checkmark\,$ Detector has been moved into data-taking position
- ✓ sPHENIX provides unique opportunities in low energy & offer kinematic overlap with the LHC.
- ✓ Wide range of physics covered in sPHENIX: jet correlations & substructure, Upsilon spectroscopy, open heavy flavor & cold QCD.
- ✓ Detector construction & data taking preparation on schedule!
- ✓ Preparing for the first data taking starting!

Thanks I

10th workshop of the APS Topical Group on Hadronic Physics (GHP2023)

sPHENIX is supported by

Office of Science

RHIC & LHC Complementarity

Different initial conditions and evolution for QGP between RHIC and LHC, allows study of scale and temperature dependence.

- ✓ Same hard probes at RHIC overlap with LHC kinematic range
- ✓ Opportunity for new probes at RHIC at the lower energy scale

sPHENIX Readout

Streamed trigger:

- ✓ Records ~10% of all collisions
- ✓ Significantly increases p+p data collected
- ✓ Crucial for open heavy flavor physics as well as cold QCD measurements

Weihu Ma

22

23

Precision Vertex Trackers

- MAPS-based micro-VerTeX detector (MVTX)
 - \checkmark Nearest the collision point
 - ✓ Based on ALICE ITS
 - ✓ Covering 2.3<r<3.9 cm radius.
 - ✓ 3-layer Monolithic Active Pixel Sensors (MAPS).
 - ✓ Excellent 2-D DCA resolution, < 10 μ m for p_T > 2GeV/c
 - ✓ Both half-detectors assembled at LBNL!
- Intermediate Silicon Tracker (INTT)
 - ✓ 2 layer (7-10 cm radius) silicon strip detector
 - ✓ Fast O(100 ns) integration time; can resolve one beam crossing

INT

All ladders are produced, detector is under final construction.

Half-detector-

MVTX

MVT>

Half-detector-2

Time Projection Chamber (TPC)

Time Projection Chamber (TPC)

- ✓ Compact (1/3 volume of ALICE TPC)
- ✓ Gateless, continuous readout
- ✓ Quad GEM electron multiplier + chevron readout pads
- ✓ ∆p/p~1% at 5 GeV/c
- ✓ Effective hit resolution: ~250 µm
- ✓ 48 layers (20-78 cm radius)
- ✓ Detector installation: middle of November

Weihu Ma

Upsilon R_{AA}

dipoles probing the QGP at three length scales.

 \checkmark The centrality dependence and particularly the p_T dependence are critical measurements for comparison between RHIC and the LHC.

GHP2023

 \checkmark sPHENIX is developing ML algorithms to reject hadronic bkg.

Weihu Ma

10

🔆 BDT

ASVM

10

Trad. cuts

12 pt (GeV)

Open Heavy Flavor

Event Display

