

HADES Collaboration, Investigation of the Σ⁰ Production Mechanism in p(3.5 GeV)+p collisions, arXiv:2301.11766 [nucl-ex]

A Motivation

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

- Study of hyperon production serves as a tool to study QCD at the confinement scale
- Hyperon production mechanism is poorly understood near threshold
- There are few measurements for Σ^0 compared to Λ hyperon production
- Focus on the **exclusive reaction** $p(3.5GeV)+p \rightarrow p + K^+ + \Sigma^0$

 $\Sigma^0\!\!\to\Lambda\gamma$ (BR~100%) and $\Lambda\!\to p\pi^-$ (BR~64%)

$pp \rightarrow pK^+ p\pi^- \gamma$

High Acceptance Di-Electron Spectrometer HADES

- π^- is identified as any **negative** charged track that is **uncorrelated** to a ring in RICH
- Statement of the task: identify the type of the charged tracks (p, K⁺, π^+)
- PID was performed based on **D**eep **L**earning (**DL**) techniques
- A neural network is trained using a **semi-supervised** technique on *simulations* and *data*
- Training features: momentum components, energy loss and time of flight.
- Inspired by the M2 model* Dropout were used to quantify the network uncertainty[§]

Particle	Accuracy %
р	98 %
K +	76 %
π+	92 %

- * Durk P Kingma et al. "Semi-supervised Learning with Deep Generative Models"
- [§] W. Esmail, Deep learning for track finding and the reconstruction of excited hyperons in proton induced reactions, PhD Thesis, 2021

2

Encoder

Unsupervised

 $pp \rightarrow pK^+ p\pi^- \gamma$

Decoder

Λ Reconstruction

Λ Reconstruction

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

12.April.2023

3

Kinematic Refit

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

Physics Results

> An indication of a **pion exchange** mechanism

- > CMS provides information on the exchange boson properties
- \succ An anisotropy observed in the Σ^0 and **p** distributions
- Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

N

Σ

K+

Kaon exchange

Pion exchange

p

pK⁺Σ⁰

12.April.2023

Phase space simulations are weighted by $COS\theta_{\Sigma^0}^{CMS}$ and $_{COS}\theta_{p_h,p}^{RFp\Sigma}$ obtained from data 5

Angular Distributions: Gottfried-Jackson Frames

- Gottfried-Jackson frames provides information on the exchange boson properties and intermediate resonances pK⁺Σ⁰
- > An anisotropy observed in the $\Sigma^{0}p$ distribution
- \succ Asymmetry in the **K**⁺**\Sigma** distribution (resonances)

Partial Wave Analysis

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

- Partial Wave Analysis (PWA) was performed in order to estimate resonant contributions
- PWA aims to determine the transition amplitude
- Tool used: Bonn-Gatchina PWA (log-likelihood minimization)

Helicity Frames Revisited: PWA solution provides a good description of angular distributions

Nucleon resonances involved are:

8

N^{*}(1710) (J^P = $\frac{1}{2}$ ⁺), N^{*}(1900) (J^P = $\frac{3}{2}$ ⁺) and Δ ^{*}(1900) (J^P = $\frac{1}{2}$ -)

p

Production Cross Section

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

 \succ The cross section is obtained by integrating the yield of the Σ^0 CMS angular distribution

Partial Wave Analysis of the Reaction $p(3.5GeV) + p o pK^+\Lambda$ to Search for the " ppK^- " Bound State HADES Collaboration *Phys.Lett.B* 742 (2015)

9

٠

Summary

HADES Collaboration, Investigation of the Σ⁰ Production Mechanism in p(3.5 GeV)+p collisions, arXiv:2301.11766 [nucl-ex]

- > Investigation of the Σ^0 production mechanism in p(3.5GeV)+p collisions
- Phase space description is not sufficient
- Dominance of pion exchange mechanism
- > Resonances with mass around **1.710** GeV/c² and **1.900** GeV/c² are preferred by the PWA fit
- Due to limited statistics, there is a significant uncertainty to the relative contributions of the different resonances
- Upgraded HADES setup (p(4.5GeV)+p Feb 2022 beam time)
- > The photon is measured in ECAL

10

Analysis of real and virtual photon decays is in progress

HADES Collaboration, Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR, EPJA 57, (2021)

13

0-1

-0.5

P(p)

0.5

0

Protons

1 1.5 M² [GeV²/c⁴]

Confusion Matrix (Simulations)

Backups: PID

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

Kaons

-0.5

10⁶

10⁵

10⁴

10³

10²

10

1.5

 M^2 [GeV²/c⁴]

0.5

0

Training Features: p_i(GeV/c), dE/dx(a.u.), TOF(ns), d_{META} (m)

Performance evaluated on real data

Backups: Lambda Selection

Backups: Kinematic Refit

Backups: Reference Frames

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

1. Center of Mass CMS Frame:

• The beam and target proton have identical momenta in opposite directions

2. Gottfried Jackson G-F Frame:

 is the polar angle between the final state particle B and the initial proton as measured in the rest frame of particles A and B Kaon exchange

Pion exchange

3. Helicity Frame:

• Defined similar to the G-F angle, but the angle with respect to the third produced particle is used

Backups: Efficiency Corrections

Investigation of the Σ^0 Production Mechanism in p(3.5 GeV)+p collisions at HADES experiment

- Experimental distributions are represented by binned histograms
 - M = RT
- **R** is the **detector response** and **T** is the **true distribution**
- **R** now is represented as a *matrix*

 $R_{ij} = P(\text{reconstructed in bin i} | \text{generated in bin j})$

- Correction or data unfolding means to invert the response matrix
- Inversion is done via the Singular Value Decomposition SVD implemented using RooUnfold framework
- Since there are background events, a **purity matrix** is defined as

$$P_{bin} = \frac{n(pK^+\Sigma^0)}{n(pK^+\Lambda) + n(pK^+\Sigma^0) + n(pK^+\Lambda\pi^0)}$$

- > Example: Correction of the Σ^0 CMS angular distribution
- \succ 2D correction in $cos \theta_{\Sigma^0}^{cms}$ and $p_{\Sigma^0}^{cms}$
- > The corrected number of Σ^0 events are transformed into a cross section by normalizing to elastic collisions at the same beam energy

- Partial Wave Analysis (PWA) was performed in order to estimate resonant contributions
- PWA aims to determine the transition amplitude $A_{tr}^{\alpha}(s) = (\alpha_1 + \alpha_3 \sqrt{s})e^{i\alpha_2}$
- Tool used: Bonn-Gatchina PWA (log-likelihood minimization)
- Eight resonances + eight non-resonant contributions (${}^{1}S_{0}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}D_{2}$, ${}^{3}F_{2}$, ${}^{3}F_{3}$ and ${}^{3}F_{4}$)
- Resonance masses and widths were fixed to the PDG values
- PWA is first applied to $pp \ \rightarrow pK^+\Lambda$
- Solution No. 8/1 from * including : (N*(1650), N*(1710), N*(1720) and N*(1900))
- An estimate of $pp \rightarrow pK^+\Lambda$ within the signal region is ~ 290 events

Backups: Partial Wave Analysis

Resonance	$\frac{Mass}{[GeV/c^2]}$	Width $[GeV/c^2]$	$\mathbf{J}^{\mathbf{P}}$
$N^*(1710)$	1.710	0.140	$\frac{1}{2}^+$
$N^{*}(1875)$	1.875	0.200	$\frac{\overline{3}}{2}$
$N^{*}(1880)$	1.880	0.300	$\frac{1}{2}$ +
$N^{*}(1895)$	1.895	0.120	$\frac{\overline{1}}{2}$
$N^{*}(1900)$	1.920	0.200	$\frac{3}{2}$ +
$\Delta^*(1900)$	1.860	0.250	$\frac{\overline{1}}{2}$ -
$\Delta^*(1910)$	1.900	0.300	$\frac{\overline{1}}{2}$ +
$\Delta^*(1920)$	1.920	0.300	$\frac{\overline{3}}{2}$ +

Solution No.	Initial State	Partial Wave Contributions	L
1	${}^{1}S_{0}, {}^{1}D_{2}, \\ {}^{3}P_{0}, {}^{3}P_{1}, \\ {}^{3}P_{2}, {}^{3}F_{2}$	$pK^{+}\Sigma^{0} \approx 41\%$ $N^{*}(1710) \approx 23\%$ $N^{*}(1900) \approx 17\%$ $\Delta^{*}(1900) \approx 19\%$	-333
2	${}^{1}S_{0}, {}^{1}D_{2}$	$pK^{+}\Sigma^{0} \approx 27\%$ $N^{*}(1710) \approx 22\%$ $N^{*}(1900) \approx 9\%$ $\Delta^{*}(1900) \approx 42\%$	-184
3	${}^{1}S_{0}, {}^{1}D_{2}, \\ {}^{3}P_{0}, {}^{3}P_{1}, \\ {}^{3}P_{2}$	$pK^{+}\Sigma^{0} \approx 63\%$ $N^{*}(1710) \approx 18\%$ $N^{*}(1900) \approx 18\%$ $\Delta^{*}(1900) \approx 2\%$	-182
4	${}^{1}S_{0}, {}^{1}D_{2}, \\ {}^{3}P_{0}, {}^{3}P_{1}, \\ {}^{3}P_{2}, {}^{3}F_{2}$	$pK^{+}\Sigma^{0} \approx 33\%$ $N^{*}(1710) \approx 27\%$ $N^{*}(1880) \approx 40\%$	-151
5	${}^{1}S_{0}$	$pK^{+}\Sigma^{0} \approx 17\%$ $N^{*}(1710) \approx 79\%$ $\Delta^{*}(1900) \approx 5\%$	-123

Backups: Treiman-Yang Angle

