HADRON SCATTERING FROM LATTICE QCD

Andrei Alexandru

OVERVIEW

- Motivation and scattering from lattice QCD
- Two pion scattering from lattice QCD
- Three pion and kaon scattering
- Non-resonant channels and three-body force
- A first look at a resonant channel
- Summary and outlook

GWQCD COLLABORATORS

Lattice QCD

- Frank Lee
- Craig Pelissier
- Dehua Guo
- Chris Culver
- Ruairi Brett

EFT/Phenomenology

- Michael Doering
- Maxim Mai
- Raquel Molina
- Bin Hu
- Daniel Sadasivan

MOTIVATION

The spectrum of hadronic resonances is an open problem: expected baryonic resonances are missing, exotic resonances are expected in light and charmed mesons, etc.

Many unsolved puzzles in the hadron spectrum where three body states play a relevant role

- Roper N(I440) I/2+ : mass spectrum is inverted presumably due to large branching ratio to NாT
- $a_{ı}(1260)$ decays to 3π but not to 2π. The decay is
 proceeding through $\rho \pi$ and $\sigma \pi$ intermediate states.
This is expected to be a test case for spin-exotics probing the gluon degrees of freedom.
- X(3872), XYZ states, etc.

SCATTERING FROM LATTICE QCD

- The basic degrees of freedom are quarks and gluons with QCD interactions. Hadrons operators are composite functions of quark\&glue fields.
- The action in Euclidean time. Hadron state energies computed from two-point correlation functions.
- For numerical simulations the spatial volume and "temporal" extent is finite.
- Scattering information is accessed indirectly by computing the energy of multi-hadron states.
- The spatial extent of the box controls the set of
 momenta available.

QUANTIZATION CONDITIONS

- The quantization conditions (QC) connect infinite volume amplitude to the finite volume energies
- For two-body states these conditions were worked out in the 80s by Lüscher
- In general QC connect an infinite tower of partial waves to the finite volume energies
- For elastic scattering in channels dominated by smallest partial-waves, phase-shifts can be extracted directly from finite volume energies

TWO PION SCATTERING
 I= I

 (ρ RESONANCE CHANNEL)
I= I PHASE SHIFTS (ρ REGION)

CHIRAL EXTRAPOLATION

C. Pelissier and AA, Phys.Rev. D87 (2013) 014503, [arXiv:1211.0092]
D. Guo, AA, R. Molina, and M. Doering, Phys. Rev. D94 (2016), no. 3 034501, [arXiv:1605.03993]

ρ-MASS CHIRAL EXTRAPOLATION

B. Hu, R. Molina, M. Doering, and AA, Phys. Rev. Lett. 117 (2016), no. 12 122001, [arXiv:1605.04823] D. Guo, AA, R. Molina, and M. Doering, Phys. Rev. D94 (2016), no. 3 034501, [arXiv:1605.03993]

TWO PION SCATTERING
 I=0

(σ RESONANCE CHANNEL)

I=0 PHASE SHIFTS— UxPT FITS

$$
K_{00}(s)=\frac{3\left(M_{\pi}^{2}-2 s\right)^{2}}{6 f_{\pi}^{2}\left(M_{\pi}^{2}-2 s\right)+8\left(L_{a} M_{\pi}^{4}+s\left(L_{b} M_{\pi}^{2}+L_{c} s\right)\right)}, \quad K_{11}(s)=\frac{4 M_{\pi}^{2}-s}{3\left(f_{\pi}^{2}-8 \hat{l}_{1} M_{\pi}^{2}+4 \hat{l}_{2} s\right)}
$$

EXTRAPOLATED PHASE-SHIFTS

D. Guo, AA, R. Molina, M. Mai, and M. Döring, Phys. Rev. D98 (2018), no. 1014507 , [arXiv:1803.02897]

TWO PION SCATTERING I=2
(NON-RESONANT CHANNEL)

PHASE SHIFTS

TWO PION SCATTERING CROSS-CHANNELS FIT

GLOBAL FIT

M. Mai, C. Culver, AA, M. Doering, and F. X. Lee, Phys. Rev. D100 (2019), no. 11 114514, [arXiv:1908.01847]

3-BODY QUANTIZATION CONDITIONS

- The quantization conditions (QC) connect infinite volume amplitude to the finite volume energies
- Compared to two-body, the three-body problem is significantly more complex: 8 kinematic variables in infinite volume, etc.
- Recently QC were developed for 3body states
- RFT (Hansen, Sharpe, ...) diagrammatic approach
- FVU (Döring, Mai) built on unitarity
- NREFT (Rusetsky, Peng, ...) (non-)relativistic EFT
- FVU and RFT were found to be equivalent

Reviews: M. Hansen, S. Sharpe, arXiv:1901.00483 M. Mai, M. Döring, A. Rusetsky, arXiv:2103.00577 RTF \& FVU comparison: A. Jackura et al, arXiv:1905.12007

$$
\operatorname{det} \mathcal{Q} \equiv \operatorname{det}\left[B_{0}(\sqrt{s})+C_{0}(\sqrt{s})+E_{L \eta} \tau_{L \eta P}^{-1}(\sqrt{s})\right]=0
$$

FVU QUANTIZATION CONDITION

Three body state finite volume energies \sqrt{s} satisfy

$$
\operatorname{det} \mathcal{Q} \equiv \operatorname{det}\left[B_{0}(\sqrt{s})+C_{0}(\sqrt{s})+E_{L \eta} \tau_{L \eta P}^{-1}(\sqrt{s})\right]=0 .
$$

FVU QUANTIZATION CONDITION

Three body state finite volume energies \sqrt{s} satisfy

FVU QUANTIZATION CONDITION

Three body state finite volume energies \sqrt{s} satisfy

$$
\operatorname{det} \mathcal{Q} \equiv \operatorname{det}\left[B_{0}(\sqrt{s})+C_{0}(\sqrt{s})+E_{L \eta} \tau_{L \eta P}^{-1}(\sqrt{s})\right]=0
$$

B : one particle exchange
C : isobar-spectator interaction

$$
\begin{aligned}
& \tau: 2 \text {-body input } \\
& \text { K-matrix, effective range, } \\
& \text { (m)|AM, etc }
\end{aligned}
$$

THREE PIONS SCATTERING

- Maximal isospin: sub channels are not resonant (I=2)
- (m)IAM for 2-body interactions, only s-wave set to match ChPT at NLO with LECs set by two strategies:
- GL: J. Gasser and H. Leutwyler, Annals Phys. I 58, 142 (1984).
- GW: cross-channel fit to lattice QCD data (M. Mai, C. Culver, A. Alexandru, M. Döring, and F. X. Lee, (20|9), arXiv: I 908.0 I 847 [hep-lat].)
- Six different ensembles: 2 pion masses ($220 \& 3 \mathrm{I} 5 \mathrm{MeV}$) and 3 different geometries.

- We set the three body contact term C to zero.

THREE PIONS SCATTERING

- We measured 30 different energy levels for 3π states.
- The predictions from the quantization conditions agree well with the lattice QCD levels.
- The two different set of LECs produce slightly different predictions: $\chi^{2} /$ dof ≈ 2.68 (GW) and $\chi^{2} /$ dof ≈ 4.86 (GL). GW LECs produce better agreement, as expected.
- The disagreement is small, but statistically significant.
- One possible source for this tension is the 3-body force term, C, which was set to zero. This gives hope that we can constrain its value from our data.

THREE PION "CONTACT"'TERM

$$
\bar{T}_{3}=\frac{3}{2}\left(\frac{K^{-1}}{32 \pi}\right)^{-1} \frac{C_{0}}{\mathbb{1}-C_{0} E_{L \eta}^{-1}\left(\frac{K^{-1}}{32 \pi}\right)^{-1}}\left(\frac{K^{-1}}{32 \pi}\right)^{-1}
$$

THREE PION "CONTACT"'TERM

$$
\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0} \simeq 6\left(\bar{t}_{0}+9 \bar{t}_{1}\right)
$$

$$
\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \simeq 54 \bar{t}_{1}
$$

BRS: T. D. Blanton, F. Romero-Lopez, and S. R. Sharpe, Phys. Rev. Lett. 124 (2020), no. 3 032001, [arXiv:1909.02973] ETMC: M. Fischer, B. Kostrzewa, L. Liu, F. Romero-Lopez, M. Ueding, and C. Urbach, Eur. Phys. J. C 81 (2021), no. 5 436, [arXiv:2008.03035] R. Brett, C. Culver, M. Mai, AA, M. Döring, and F. X. Lee, Phys. Rev. D 104 (2021), no. 1014501 , [arXiv:2101.06144]

THREE KAONS SCATTERING

- Maximal isospin: sub channels are not resonant
- IAM for 2-body interactions, only s-wave set to match ChPT at NLO with LECs set by two strategies:
- $\mathrm{SI}: f_{\pi}$ extrapolated using physical point dar and NLO chiral expressions
- S2: meson decay constant measured from lattice QCD
- Scattering length matches lattice QCD measurements with small systematics for $m_{\pi} \lesssim 500 \mathrm{MeV}$.
- We set the three body contact term C to zero.

THREE KAONS SCATTERING

- NPLQCD computed ground states for three-kaons for pion masses in the range 300-600 MeV.
- Ground state predictions match well calculations from NPLQCD.
W. Detmold, K. Orginos, M. J. Savage, and A. Walker-Loud, Phys. Rev. D 78 (2008) 054514, [arXiv:0807.1856] AA, R. Brett, C. Culver, M. Döring, D. Guo, F. X. Lee, and M. Mai, Phys. Rev. D 102 (2020), no. 11 114523, [arXiv:2009.12358]

THREE KAONS SCATTERING

- On a set of $\mathrm{N}_{\mathrm{f}}=2$ ensembles we calculated ground and excited 3 K states for $m_{\pi}=220 \mathrm{MeV}$ and 3 I 5 MeV .
- We found good agreement with predictions in both irreducible representations we studied.
- Small tension might be due to quenching of strange quarks, or missing contact term.

TAKE HOME

- Two-body and three-body (meson) spectra can be computed with high-precision from lattice QCD
- In the two-meson sector the phase-shifts and resonance parameters can be extracted reliably
- For the three meson sector we found that 3 kaons and 3 pions at maximal isospin the quantization conditions match lattice QCD results
- For 3-hadrons case more energy levels are needed to constrain the amplitudes than in two-body scattering
- For the three-pion case the contact term can be constrained using lattice QCD data (albeit poorly)
- Next challenge for lattice QCD is including resonant sub-channels (add both $\pi \sigma$ \& $\pi \rho$ channels for a।)
- The door is open towards studying three-body resonances

