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OVERVIEW
• Motivation and scattering from lattice QCD

• Two pion scattering from lattice QCD

• Three pion and kaon scattering

• Non-resonant channels and three-body force

• A first look at a resonant channel

• Summary and outlook
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MOTIVATION
The spectrum of hadronic resonances is an open problem: 
expected baryonic resonances are missing, exotic 
resonances are expected in light and charmed mesons, etc.

Many unsolved puzzles in the hadron spectrum where 
three body states play a relevant role

• Roper N(1440) 1/2+ : mass spectrum is inverted 
presumably due to large branching ratio to Nππ

• a1(1260) decays to 3π but not to 2π. The decay is 
proceeding through ρπ and σπ intermediate states. 
This is expected to be a test case for spin-exotics 
probing the gluon degrees of freedom.

• X(3872), XYZ states, etc.
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SCATTERING FROM LATTICE QCD
• The basic degrees of freedom are quarks and gluons 

with QCD interactions. Hadrons operators are 
composite functions of quark&glue fields.

• The action in Euclidean time. Hadron state 
energies computed from two-point correlation 
functions.

• For numerical simulations the spatial volume and 
“temporal” extent is finite.

• Scattering information is accessed indirectly by 
computing the energy of multi-hadron states.

• The spatial extent of the box controls the set of 
momenta available.
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QUANTIZATION CONDITIONS
• The quantization conditions (QC) connect 

infinite volume amplitude to the finite 
volume energies

• For two-body states these conditions were 
worked out in the 80s by Lüscher

• In general QC connect an infinite tower of 
partial waves to the finite volume energies

• For elastic scattering in channels dominated 
by smallest partial-waves, phase-shifts can be 
extracted directly from finite volume 
energies 

Lattice QCD correlators
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Two࢚body quantization condition

ࣽ ɸʯŗȳʚǶʌŗʚǶɄȳ ƉɄȳƕǶʚǶɄȳ ࣯�ʷʌƉǫƨɼ ǑɄɼȭʯțŗࣱࣘ

det[ eE�R(1+K)� "(1+K,G) ]= y
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` ⇠ cot �H

ȕȳɄ˝ȳࣗ ȭǶ˥ƨʌ ɱŗɼʚǶŗț ˝ŗ˙ƨʌ

ࣽ ƕƨʚƨɼȭǶȳŗȳʚ Ʉ˙ƨɼ ƕƨƉŗ˦ Ɖǫŗȳȳƨțࣗ ɱŗɼʚǶŗț ˝ŗ˙ƨʌ ࣯ʚɼʯȳƉŗʚǶɄȳࣱࣛ

ࣽ ǶȭɱțƨȭƨȳʚŗʚǶɄȳ ˝Ƕʚǫ ǖɼɄʯɱ ʚǫƨɄɼ˦ ǑɄɼ ƉʯſǶƉ ſɄ˥ ࣯਀ ſɄɄʌʚƨƕ Ǒɼŗȭƨʌࣱࣘ
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TWO PION SCATTERING
I=1

(  RESONANCE CHANNEL)ρ



I=1 PHASE SHIFTS (  REGION)ρ

D. Guo, AA, R. Molina, and M. Doering, Phys. Rev. D94 (2016), no. 3 034501, [arXiv:1605.03993]

C. Pelissier and AA, Phys.Rev. D87 (2013) 014503, [arXiv:1211.0092]



CHIRAL EXTRAPOLATION 

D. Guo, AA, R. Molina, and M. Doering, Phys. Rev. D94 (2016), no. 3 034501, [arXiv:1605.03993]

C. Pelissier and AA, Phys.Rev. D87 (2013) 014503, [arXiv:1211.0092]
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-MASS CHIRAL EXTRAPOLATION ρ

D. Guo, AA, R. Molina, and M. Doering, Phys. Rev. D94 (2016), no. 3 034501, [arXiv:1605.03993]

B. Hu, R. Molina, M. Doering, and AA, Phys. Rev. Lett. 117 (2016), no. 12 122001, [arXiv:1605.04823]
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TWO PION SCATTERING
I=0

(  RESONANCE CHANNEL)σ



I=0 PHASE SHIFTS—U PT FITSχ
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EXTRAPOLATED PHASE-SHIFTS

D. Guo, AA, R. Molina, M. Mai, and M. Döring, Phys. Rev. D98 (2018), no. 1 014507, [arXiv:1803.02897]



TWO PION SCATTERING
I=2

(NON-RESONANT CHANNEL)



PHASE SHIFTS
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TWO PION SCATTERING
CROSS-CHANNELS FIT



GLOBAL FIT
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FIG. 1. Top panel: Energy eigenvalues (light blue bars) of all fifi channels determined on 6 gauge configurations - {E1, ..E6} for
a given isospin, irrep and boost momentum P . The horizontal gray and orange lines denote the location of non-interacting
levels and that of the central value of the global fit to these data. Lower panel: Phase-shifts in all three fifi channels after
mapping finite-volume spectrum (upper panel) and the global fit results using Lüscher’s method for a given isospin and angular
momentum. The orange bands show the uncertainty of the global fit.

M. Mai, C. Culver, AA, M. Doering, and F. X. Lee, Phys. Rev. D100 (2019), no. 11 114514, [arXiv:1908.01847]



3-BODY QUANTIZATION CONDITIONS
• The quantization conditions (QC) connect infinite 

volume amplitude to the finite volume energies

• Compared to two-body, the three-body problem is 
significantly more complex: 8 kinematic variables in 
infinite volume, etc.

• Recently QC were developed for 3body states

• RFT (Hansen, Sharpe, …) diagrammatic approach

• FVU (Döring, Mai) built on unitarity

• NREFT (Rusetsky, Peng, …) (non-)relativistic EFT

• FVU and RFT were found to be equivalent
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Two࢚body quantization condition
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Reviews: M. Hansen, S. Sharpe, arXiv:1901.00483 M. Mai, M. Döring, A. Rusetsky , arXiv:2103.00577
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FVU QUANTIZATION CONDITION
Three body state finite volume energies  satisfys

Three࢚body quantization condition (FVU࢏
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M. Mai and M. Döring, Eur. Phys. J. A53 (2017), no. 12 240, [arXiv:1709.08222]
R. Brett, C. Culver, M. Mai, AA, M. Doering, and F. X. Lee, Phys. Rev. D 104 (2021), no. 1 014501, [arXiv:2101.06144]



FVU QUANTIZATION CONDITION
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A = j, j⇡+ scattering
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K-matrix, effective range, 

(m)IAM, etc
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M. Mai and M. Döring, Eur. Phys. J. A53 (2017), no. 12 240, [arXiv:1709.08222]
R. Brett, C. Culver, M. Mai, AA, M. Doering, and F. X. Lee, Phys. Rev. D 104 (2021), no. 1 014501, [arXiv:2101.06144]



THREE PIONS SCATTERING
• Maximal isospin: sub channels are not resonant (I=2)

• (m)IAM for 2-body interactions, only s-wave set to 
match ChPT at NLO with LECs set by two strategies:

• GL: J. Gasser and H. Leutwyler, Annals Phys. 158, 
142 (1984). 

• GW: cross-channel fit to lattice QCD data (M. Mai, 
C. Culver, A. Alexandru, M. Döring, and F. X. Lee, 
(2019), arXiv:1908.01847 [hep-lat].)

• Six different ensembles: 2 pion masses 
(220&315MeV) and 3 different geometries.

• We set the three body contact term C to zero.

C. Culver, M. Mai, R. Brett, AA, and M. Döring, Phys. Rev. D 101 (2020), no. 11 114507, [arXiv:1911.09047]
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FIG. 1. Top panel: Energy eigenvalues (light blue bars) of all fifi channels determined on 6 gauge configurations - {E1, ..E6} for
a given isospin, irrep and boost momentum P . The horizontal gray and orange lines denote the location of non-interacting
levels and that of the central value of the global fit to these data. Lower panel: Phase-shifts in all three fifi channels after
mapping finite-volume spectrum (upper panel) and the global fit results using Lüscher’s method for a given isospin and angular
momentum. The orange bands show the uncertainty of the global fit.M. Mai, C. Culver, AA, M. Döring, and F. X. Lee, Phys. Rev. D100 (2019), no. 11 114514, [arXiv:1908.01847]



THREE PIONS SCATTERING
• We measured 30 different energy levels for 

3π states.
• The predictions from the quantization 

conditions agree well with the lattice QCD 
levels.

• The two different set of LECs produce 
slightly different predictions:  
(GW) and  (GL). GW LECs 
produce better agreement, as expected.

• The disagreement is small, but statistically 
significant.

• One possible source for this tension is the 
3-body force term, C, which was set to zero. 
This gives hope that we can constrain its 
value from our data.

χ2/dof ≈ 2.68
χ2/dof ≈ 4.86

4
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4.0

4.5

5.0

FIG. 1. Finite-volume centre-of-mass energies, in units of mfi, for three pions in maximal isospin at two di�erent pion masses:
E1,2,3 for 315 MeV and E4,5,6 for 220 MeV (separated by the gray column). For each pion mass there is one cubic box (E1,4) and
two elongated boxes (E2,3,5,6). The separate columns distinguish di�erent irreps of the rotational symmetry group containing
energies below the inelastic threshold, 5mfi (solid black line). The parity of the irreps is specified by g (even) and u (odd). The
data points are the LQCD energy levels with error bars inside of the circles. The red (left) and blue (right) solid lines in each
column are the predictions from R3Q using GL or GW LECs, respectively. The dashed lines are the non-interacting energy
levels. We plot them as a function of ÷ to distinguish the levels that depend on the elongation. Boosted frames with non-zero
total momentum are denoted by the superscript [001] indicating a single unit of momentum in the elongation (z) direction.

below the inelastic threshold. In total 30 energy eigenval-
ues are extracted within the elastic scattering region, 23
of them at a pion mass of 315 MeV, the remaining seven
at 220 MeV.

The lattice results agree with predictions of the finite
volume spectrum from a state-of-the-art three body rel-
ativistic unitary finite-volume formalism, extended to
accommodate elongations. The physical input to the for-
malism is a three-body contact term and the two-pion
interaction. We set the former to zero, and parametrize
the latter by the modified inverse amplitude method with
two sets of LECs, one from a fit to experimental data and
another one determined from lattice calculations of pion-
pion scattering on the same ensembles. Not surprisingly,

the LECs determined from lattice calculations provide
the better prediction. There is some tension between
the lattice data and prediction, which may be due to the
three-body term being set to zero. Future work in fitting,
allowing the LECs to vary and the inclusion of pion mass
correlations, will reduce this tension.

Success here shows that both lattice and phenomenolog-
ical e�orts reached maturity and can be used to constrain
three-body physics in QCD, for example the Roper and
a1(1260) resonances.

C. Culver, M. Mai, R. Brett, AA, and M. Döring, Phys. Rev. D 101 (2020), no. 11 114507, [arXiv:1911.09047]



THREE PION “CONTACT” TERM
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FIG. 3. Top: Connection between the contact three-to-three (T̄3) and isobar-spectator interaction (C0). Two-body dynamics
is encoded in the K-matrix, which does not contribute to divergences. Bottom: Visualisation of C0 (in MeV≠2) from Eq. (6)
for T̄3 from leading order ChPT at relevant values of total three-body energy

Ô
s. In- and outgoing spectator momenta p and q

are given by their index in the set (2fi)/(L){(0, 0, 0), ..., (±2, ±1, 0)}, ordered by magnitude.

provides an expression equivalent to a contact term (T̄3)

T̄3 = 3
2

3
K

≠1

32fi

4≠1
C0

1≠ C0E
≠1
L÷

1
K≠1

32fi

2≠1

3
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4≠1
,

(5)

or equivalently

C0 =
3

K
≠1

32fi

4 12
3 T̄3

2 3
K

≠1

32fi

4
1

1+ E
≠1
L÷

! 2
3 T̄3

" 1
K≠1

32fi

2 ,

(6)

where T̄3 denotes a real three-body contact term. This
equation is schematically illustrated in Fig. 3 to the top.
Note again that appearance of factors (32fi) is caused by
the fact that we are working in the plane wave basis, see
Appendix A 2 for more details. This relation is of the
same form as the relation between the K3,df and C0 term,
which can be obtained from a matching of FVU and RFT
formalisms, see for example Refs. [50, 51]. Also, as noted
there, it implies that in general an isotropic T̄3 leads to
anisotropic C0 and vice versa.

To expand on this further, we consider the following
example. Chiral perturbation theory at leading chiral
order (this was used for the RFT formalism in Ref. [43])
yields for our formalism a three-to-three contact term of

the form

T̄3 = 1
27f4

fi

!
4s ≠ 9m

2
fi

"
. (7)

Using now Eq. (6) with the K-matrix from Eq. (2)
we obtain a prediction for the isobar-spectator inter-
action C0(

Ô
s, p, q), for the momenta belonging to the

in/outgoing spectators. The resulting symmetric (in p, q)
isobar-spectator contact interaction is depicted for sev-
eral values of total three-body energy 3mfi <

Ô
s < 5mfi

in Fig. 3. We observe that several orders of magnitude
di�erence between the overall scales of the T̄3 and C0
(e.g. C0 ¥ 10≠6 MeV≠2 ¡ mfiT̄3 ¥ 102) occurs naturally,
connecting the results of Refs. [43, 44].

D. Three-body state energies

Given parameterizations of the two- and three-body in-
teractions, the finite-volume spectrum can be determined
by searching for energies at which Eq. (1) is satisfied.
To find the energies associated with a particular irrep �
of the symmetry group G, we first block-diagonalize the
matrix Q

Q = diag(Q�1 , Q�2 , . . . ),

∆ det Q =
Ÿ

i

det Q�i .
(8)
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is encoded in the K-matrix, which does not contribute to divergences. Bottom: Visualisation of C0 (in MeV≠2) from Eq. (6)
for T̄3 from leading order ChPT at relevant values of total three-body energy
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where T̄3 denotes a real three-body contact term. This
equation is schematically illustrated in Fig. 3 to the top.
Note again that appearance of factors (32fi) is caused by
the fact that we are working in the plane wave basis, see
Appendix A 2 for more details. This relation is of the
same form as the relation between the K3,df and C0 term,
which can be obtained from a matching of FVU and RFT
formalisms, see for example Refs. [50, 51]. Also, as noted
there, it implies that in general an isotropic T̄3 leads to
anisotropic C0 and vice versa.

To expand on this further, we consider the following
example. Chiral perturbation theory at leading chiral
order (this was used for the RFT formalism in Ref. [43])
yields for our formalism a three-to-three contact term of

the form

T̄3 = 1
27f4

fi

!
4s ≠ 9m

2
fi

"
. (7)

Using now Eq. (6) with the K-matrix from Eq. (2)
we obtain a prediction for the isobar-spectator inter-
action C0(

Ô
s, p, q), for the momenta belonging to the

in/outgoing spectators. The resulting symmetric (in p, q)
isobar-spectator contact interaction is depicted for sev-
eral values of total three-body energy 3mfi <

Ô
s < 5mfi

in Fig. 3. We observe that several orders of magnitude
di�erence between the overall scales of the T̄3 and C0
(e.g. C0 ¥ 10≠6 MeV≠2 ¡ mfiT̄3 ¥ 102) occurs naturally,
connecting the results of Refs. [43, 44].

D. Three-body state energies

Given parameterizations of the two- and three-body in-
teractions, the finite-volume spectrum can be determined
by searching for energies at which Eq. (1) is satisfied.
To find the energies associated with a particular irrep �
of the symmetry group G, we first block-diagonalize the
matrix Q

Q = diag(Q�1 , Q�2 , . . . ),

∆ det Q =
Ÿ

i

det Q�i .
(8)

Leading order ChPT:
R. Brett, C. Culver, M. Mai, AA, M. Doering, and F. X. Lee, Phys. Rev. D 104 (2021), no. 1 014501, [arXiv:2101.06144]
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t0 · 103MeV2
t1 · 103MeV2

l
r
1 · 103

l
r
2 · 103

‰
2
I=3 + ‰

2
priors ‰

2
dof

0.0 0.0 ≠4.07 +5.14 27.39 0 2.28
≠1.7(2.3) 0.0 ≠4.07 +5.14 25.95 0 2.36
≠1.7(2.1) +0.12(10) ≠4.07 +5.14 25.76 0 2.58

0.0 0.0 ≠4.034(85) +5.21(12) 27.08 0.14 2.27
≠4.5(3.5) 0.0 ≠3.947(98) +5.39(15) 21.41 1.52 2.08
≠4.5(3.5) +0.24(18) ≠4.038(93) +5.20(14) 22.33 0.10 2.24

0.0 0.0 ≠4.3(1.5) +5.42(83) 27.11 0.03ú

t0 · 103MeV2
t1 · 103MeV2

l1 · 103
l
r
2 · 103

‰
2
I=3 + ‰

2
priors ‰

2
dof

0.0 0.0 ≠4.07 +5.14 33.78 0 4.83
≠5.3(1.5) 0.0 ≠4.07 +5.14 15.10 0 2.52
+5.8(4.5) ≠0.92(38) ≠4.07 +5.14 10.41 0 2.08

0.0 0.0 ≠4.27(12) +4.75(20) 25.80 3.79 4.23
≠5.0(1.6) 0.0 ≠4.12(12) +5.03(20) 14.50 0.30 2.47
+6(12) ≠0.9(1.1) ≠4.10(13) +5.09(22) 10.27 0.07 2.07

0.0 0.0 ≠5.1(1.8) +3.2(1.1) 7.11 0.11ú

TABLE III. Fit results for T̄3 and LECs including I = 3 fififi energies only for mfi = 315 MeV (left) and mfi = 220 MeV (right).
Bold font indicates parameters fixed to values from Ref. [88], others are left as free parameters of the fit. The final row in each
table is for a fit using relaxed priors, as indicated by an asterisk and described in the text.

We also indicate in the figures with narrower bands the
fit results for {t0, t1} when the LECs are not allowed to
vary, corresponding to the second and third rows in Ta-
ble III. We see that while the central values are almost the
same, the error bands are almost doubled when we allow
the LECs to vary. This shows that even with small error
bars (few percent level) in the two-body parametrization,
there is a large impact on the error of the three-body
terms in this channel. This is partly due to the smallness
of three-body terms. The smallness is unsurprising since
the three-body e�ects are suppressed by an additional
volume factor relative to two-body interactions.

In terms of fit quality, we note that for both masses, the
fits for the linear form with varying LECs produce a ‰

2 per
degree of freedom around 2. This indicates that there is a
slight tension between the data and the parametrization
used here. At this point it is not easy to determine
whether this is the result of the quality of the lattice data
or due to the lack of flexibility in the fit form used for
the three-body terms. We note that since the three-body
predictions are sensitive to the two-body inputs, some of
this tension might have as a source small discrepancies
in the two-body amplitudes used in the quantization
conditions. We note that when analyzing two-meson
energy levels using mIAM framework, a similar level of
agreement between data and predictions was found [88].

An interesting question is whether we can extract the
LECs parametrizing the two-body interactions directly
from three-body energy levels. The three-body energy
data set does not provide enough constraints to pin down
both the LECs and the three-body terms. We are however
able to fit the LECs when the three-body terms are set to
zero. Setting t̄0,1 to zero makes sense, since their e�ect is
rather small. To stabilize the root finding routines used to
predict the three-body energy levels as a function of the
LECs, we constrained the region scanned for the LECs to
a reasonable window, within one order of magnitude of the
values determined from the two-body fits. Procedurally
this was accomplished using a set of relaxed priors. We
used a correlation matrix �relaxed = 302 ◊ �, so that the
equivalent error bands on the LECs were at the level of
100%, in e�ect constraining only the order of magnitude
of the LECs.

The results for these fits are included in the last rows
of Table III. We find that the values of the LECs are close
to the ones generated from the two-body fits, albeit with
larger error bars. This provides a good cross-check for
the formalism and suggests that with enough three-body
energy levels, we should be able to also constrain the
two-body amplitudes.

To put the results on the three-body force in perspective,
we compare our determination of the three-body term
with those obtained in the literature [43, 56] in Fig. 6. In
doing so, the matching of corresponding three-body terms
can be made on the level of scattering amplitudes applying
the procedure discussed in Sec. III C. We note that this
yields an approximate identification Kiso,0

df,3 ƒ 6(t̄0 + 9t̄1)
and Kiso,1

df,3 ƒ 54t̄1. We see reasonable agreement between
di�erent collaborations, not too di�erent from the leading
order ChPT prediction. This indicates the rapid progress
made in the community in mapping out the three-body
force.

V. CONCLUSIONS

The field of three-body physics is rapidly advancing,
fueled by progress on two fronts. On the one hand, pre-
cise energy levels are being produced in LQCD for in-
teracting systems such as three pions or kaons. On the
other hand, formalisms that connect the finite-volume
QCD spectrum and infinite-volume three-body scattering
amplitude, called quantization conditions, are reaching
maturity. Such progress has allowed the possibility of
extracting quantitative information on the three-body
force from first principles.

In this work we apply the FVU formalism to analyze
the spectrum obtained previously in Ref. [55]. We used
a minimal parametrization for the three-body contact
term and constrain the parameters from fits to the spec-
trum extracted using lattice QCD. We find that the heavy
quark mass results are compatible with expectations from
leading order ChPT, but our lower mass results are in
tension with the predictions. Note that this is similar
to other LQCD determinations of this term in the RFT
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TABLE III. Fit results for T̄3 and LECs including I = 3 fififi energies only for mfi = 315 MeV (left) and mfi = 220 MeV (right).
Bold font indicates parameters fixed to values from Ref. [88], others are left as free parameters of the fit. The final row in each
table is for a fit using relaxed priors, as indicated by an asterisk and described in the text.

We also indicate in the figures with narrower bands the
fit results for {t0, t1} when the LECs are not allowed to
vary, corresponding to the second and third rows in Ta-
ble III. We see that while the central values are almost the
same, the error bands are almost doubled when we allow
the LECs to vary. This shows that even with small error
bars (few percent level) in the two-body parametrization,
there is a large impact on the error of the three-body
terms in this channel. This is partly due to the smallness
of three-body terms. The smallness is unsurprising since
the three-body e�ects are suppressed by an additional
volume factor relative to two-body interactions.

In terms of fit quality, we note that for both masses, the
fits for the linear form with varying LECs produce a ‰

2 per
degree of freedom around 2. This indicates that there is a
slight tension between the data and the parametrization
used here. At this point it is not easy to determine
whether this is the result of the quality of the lattice data
or due to the lack of flexibility in the fit form used for
the three-body terms. We note that since the three-body
predictions are sensitive to the two-body inputs, some of
this tension might have as a source small discrepancies
in the two-body amplitudes used in the quantization
conditions. We note that when analyzing two-meson
energy levels using mIAM framework, a similar level of
agreement between data and predictions was found [88].

An interesting question is whether we can extract the
LECs parametrizing the two-body interactions directly
from three-body energy levels. The three-body energy
data set does not provide enough constraints to pin down
both the LECs and the three-body terms. We are however
able to fit the LECs when the three-body terms are set to
zero. Setting t̄0,1 to zero makes sense, since their e�ect is
rather small. To stabilize the root finding routines used to
predict the three-body energy levels as a function of the
LECs, we constrained the region scanned for the LECs to
a reasonable window, within one order of magnitude of the
values determined from the two-body fits. Procedurally
this was accomplished using a set of relaxed priors. We
used a correlation matrix �relaxed = 302 ◊ �, so that the
equivalent error bands on the LECs were at the level of
100%, in e�ect constraining only the order of magnitude
of the LECs.

The results for these fits are included in the last rows
of Table III. We find that the values of the LECs are close
to the ones generated from the two-body fits, albeit with
larger error bars. This provides a good cross-check for
the formalism and suggests that with enough three-body
energy levels, we should be able to also constrain the
two-body amplitudes.

To put the results on the three-body force in perspective,
we compare our determination of the three-body term
with those obtained in the literature [43, 56] in Fig. 6. In
doing so, the matching of corresponding three-body terms
can be made on the level of scattering amplitudes applying
the procedure discussed in Sec. III C. We note that this
yields an approximate identification Kiso,0

df,3 ƒ 6(t̄0 + 9t̄1)
and Kiso,1

df,3 ƒ 54t̄1. We see reasonable agreement between
di�erent collaborations, not too di�erent from the leading
order ChPT prediction. This indicates the rapid progress
made in the community in mapping out the three-body
force.

V. CONCLUSIONS

The field of three-body physics is rapidly advancing,
fueled by progress on two fronts. On the one hand, pre-
cise energy levels are being produced in LQCD for in-
teracting systems such as three pions or kaons. On the
other hand, formalisms that connect the finite-volume
QCD spectrum and infinite-volume three-body scattering
amplitude, called quantization conditions, are reaching
maturity. Such progress has allowed the possibility of
extracting quantitative information on the three-body
force from first principles.

In this work we apply the FVU formalism to analyze
the spectrum obtained previously in Ref. [55]. We used
a minimal parametrization for the three-body contact
term and constrain the parameters from fits to the spec-
trum extracted using lattice QCD. We find that the heavy
quark mass results are compatible with expectations from
leading order ChPT, but our lower mass results are in
tension with the predictions. Note that this is similar
to other LQCD determinations of this term in the RFT

R. Brett, C. Culver, M. Mai, AA, M. Döring, and F. X. Lee, Phys. Rev. D 104 (2021), no. 1 014501, [arXiv:2101.06144]
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THREE KAONS SCATTERING
• Maximal isospin: sub channels are not resonant

• IAM for 2-body interactions, only s-wave set to match 
ChPT at NLO with LECs set by two strategies:

• S1:  extrapolated using physical point dar and 
NLO chiral expressions

• S2: meson decay constant measured from lattice 
QCD

• Scattering length matches lattice QCD measurements 
with small systematics for . 

• We set the three body contact term C to zero.
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THREE KAONS SCATTERING

• NPLQCD computed ground states for three-kaons for pion masses in the range 300-600 MeV.
• Ground state predictions match well calculations from NPLQCD.
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FIG. 2. Comparison of the predicted K≠K≠K≠ finite-volume spectrum to the results of LQCD calculations [51, 115] by the
NPLQCD collaboration. Top and bottom row show projections to relevant irreps for P = 0 and P = (1, 0, 0) cases, respectively.
The MK(Mfi) trajectory is chosen as in the latter references, while the decay constants are determined from the NLO chiral
extrapolations (dot-dashed line) or by setting them directly to the NPLQCD values (blue solid lines). In the top left figure, the
red (gray) error bars represent the uncertainty quoted in Ref. [51] (including variation of scale setting). The insert in the A1u

plot shows the ground state data, predictions, and a prediction for the physical point.

in/outgoing discrete lattice spectator momenta p/q after
projecting the elements in parenthesis to an irrep �. The
non-diagonal matrix B denotes the one-particle exchange
term, while the diagonal matrix flL(E3, P ) represents the
two-body self-energy term, see, e.g., appendix of Ref. [58]
for explicit expressions. The propagation of the spectator
yields the factor [EL]pq = ”pq2L

3


M2
fi + p2.

The only unknown pieces of the quantization condition
are matrices K

≠1

2
(E3) and C(E3), encoding dynamics of

two- (via the usual K-matrix) and three-body interac-
tions, respectively. Since not many data is available yet
for the 3K

≠-system and in analogy to the similar 3fi
+

system [63], we set the latter to zero. The two-body K-
matrix is restricted to the dominant S-wave, noting that
due to the nature of the 3bQC all relative partial waves
between the spectator and the two-body subsystem are
included automatically by the one-particle exchange term
B. Specifically, the K-matrix is chosen to match the in-
verse amplitude method [102, 106, 107, 116, 117] – a very
successful description of two-meson scattering across wide
energy and meson mass ranges and all two-pseudoscalar
meson interaction channels [29],

T2(s) = (TLO(s))2

TLO(s) ≠ TNLO(s) = 1
K

≠1

2
(s) ≠ fl(s)

. (5)

Here, T(N)LO refers to the (next-to-)leading chiral order
scattering amplitudes [118], and fl(s) denotes the usual
finite part of the two-body self-energy evaluated in di-
mensional regularization. The K

≠
K

≠ amplitude to one
loop is obtained by using crossing symmetry for results
of Ref. [106]. A summary of the relevant formulas is in-
cluded in the Supplementary Material. In particular, the
corresponding K-matrix depends on {Mfi, MK , ffi, fK} as
well as renormalized low-energy constants (LECs) {L

r
i }.

The e�ect of the first set of parameters is more important
than the latter for not too large meson masses, because
the chiral series is ordered in powers of M

2
/f

2. Thus,
we fix the LECs to the results of the most recent global
fits to the lattice results [100] (discussion of older LECs
is moved to the Supplementary Material), but explore
various scenarios for the remaining inputs below.

As a check we evaluate the scattering length
MKa0 = T2(4M

2

K) at di�erent meson masses
and compare with the NPLQCD collaboration re-
sults [33] along their (Mfi, MK) trajectory (Mfi, MK) œ

{(293, 583), (355, 601), (493, 643), (592, 680)} MeV. For
the decay constants we compare two scenarios: (S1) by
extrapolating the pion decay constant using input at the
physical point and NLO chiral expressions [118] with
LECs from Ref. [100] and (S2) by using the meson decay

W. Detmold, K. Orginos, M. J. Savage, and A. Walker-Loud, Phys. Rev. D 78 (2008) 054514, [arXiv:0807.1856]
AA, R. Brett, C. Culver, M. Döring, D. Guo, F. X. Lee, and M. Mai, Phys. Rev. D 102 (2020), no. 11 114523, [arXiv:2009.12358]



THREE KAONS SCATTERING
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• On a set of Nf=2 ensembles we calculated ground and excited 3K states for mπ=220MeV and 315 MeV.
• We found good agreement with predictions in both irreducible representations we studied.
• Small tension might be due to quenching of strange quarks, or missing contact term.

AA, R. Brett, C. Culver, M. Döring, D. Guo, F. X. Lee, and M. Mai, Phys. Rev. D 102 (2020), no. 11 114523, [arXiv:2009.12358]
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TAKE HOME
• Two-body and three-body (meson) spectra can be computed with high-precision from lattice QCD

• In the two-meson sector the phase-shifts and resonance parameters can be extracted reliably

• For the three meson sector we found that 3 kaons and 3 pions at maximal isospin the quantization conditions 
match lattice QCD results

• For 3-hadrons case more energy levels are needed to constrain the amplitudes than in two-body scattering

• For the three-pion case the contact term can be constrained using lattice QCD data (albeit poorly)

• Next challenge for lattice QCD is including resonant sub-channels (add both πσ & πρ channels for a1)

• The door is open towards studying three-body resonances


