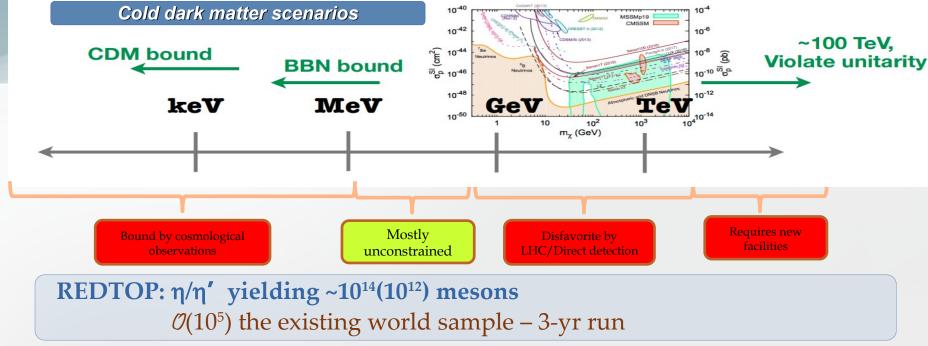
The REDTOP experiment: a η/η' factory to explore dark matter and physics beyond the Standard Model



Rare Eta Decays
TO Probe New Physics

Corrado Gatto
INFN Napoli and Northern Illinois University

REDTOP Key Points

Hadro-produced mesons: requires a 30W (55W) CW proton beam Pion beam also well suited

Detector designed to search for BSM physics in the MeV-GeV region

Main search fields: dark matter and CP-violation Sensitive to 17MeV resonances

Moderate cost:

\$55M excl. contingency and labor

"Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders" [G. Krnjaic RF6 Meeting, 8/2020]

- The only known particles with all-zero quantum numbers: Q = I = J = S = B = L = 0 are the η/η' mesons and the Higgs boson (also the vacuum!) ->very rare in nature
- The η meson is a Goldstone boson (the η' meson is not!)
- The η/η' decays are flavor-conserving reactions

Experimental advantages:

- Hadronic production cross section is quite large (~ 0.1 barn) → much easier to produce than heavier mesons
- All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance.
- EM decays are forbidden in lowest order by C invariance and angular momentum conservation Branching Ratio of processes from New Physics are enhanced compared to SM.

A η/η' factory is equivalent to a low energy Higgs factory and an excellent laboratory to probe New Physics below 1 GeV

4/14/2023 C. Gatto - INFN & NIU **3**

Main Physics Goals of REDTOP

Test of CP invariance via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{+} \pi^{-}$ Search for asymmetries in the dalitz plot with very high statistics

Test of CP invariance via μ polarization studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$, $\eta \rightarrow \gamma \mu^{+} \mu^{-}$, $\eta \rightarrow \mu^{+} \mu^{-}$, Measure the angular asymmetry between spin and momentum

Dark photon searches: $\eta \rightarrow \gamma A'$, with $A' \rightarrow \mu^{+}\mu^{-}$, $A' \rightarrow e^{+}e^{-}$ Need excellent vertexing and particle ID

QCD axion and ALP searches: $\eta \rightarrow \pi\pi a$, with $a \rightarrow \gamma\gamma$, $a \rightarrow \mu^{+}\mu^{-}$, $a \rightarrow e^{+}e^{-}$ Dual (or triple!) calorimeters and vertexing

Dark scalar searches: $\eta \rightarrow \pi^{\circ}H$, with $H \rightarrow \mu^{+}\mu^{-}$, $H \rightarrow e^{+}e^{-}$ Dual (or triple!) calorimeters and particle ID

Lepton Flavor Universality studies: $\eta \rightarrow \mu^{+}\mu^{-}X$, $\eta \rightarrow e^{+}e^{-}X$ Need excellent particle ID

4/14/2023 C. Gatto - INFN & NIU **4**

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation

- ${}^{\square}CP$ Violation via Dalitz plot mirror asymmetry: $\eta \to \pi^{\circ} \pi^{\dagger} \pi$
- □*CP Violation (Type I P and T odd , C even):* η -> 4π ° \rightarrow 8γ
- **□***CP Violation (Type II C and T odd , P even):* $\eta \to \pi^{\circ} \ell^{+} \ell$ *and* $\eta \to 3\gamma$
- □ Test of CP invariance via μ longitudinal polarization: $\eta \to \mu^+\mu^-$
- □*CP* inv. via $\gamma*$ polarization studies: $\eta \to \pi^+\pi^-e^+e^-$ & $\eta \to \pi^+\pi^-\mu^+\mu^-$
- □*CP* invariance in angular correlation studies: $η \rightarrow μ^+μ^-e^+e^-$
- □*CP* invariance in angular correlation studies: $\eta \to \mu^+\mu^-\pi^+\pi^-$
- \Box *CP invariance in* μ *polar. in studies:* $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$
- □*T invar. via* μ *transverse polarization:* $η → π^{\circ}μ^{+}μ^{-}$ *and* $η → γμ^{+}μ^{-}$
- □CPT violation: μ polr. in $\eta \to \pi^{+}\mu \nu vs \eta \to \pi^{-}\mu^{+}\nu \gamma$ polar. in $\eta \to \gamma \gamma$

Other discrete symmetry violations

- □ Lepton Flavor Violation: $\eta \rightarrow \mu^+e^- + c.c.$
- □ Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma \mu^+ e^- + c.c.$
- □ Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$

Non- η/η' based BSM Physics

- □*Neutral pion decay:* $\pi^{o} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$
- \square ALP's searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^+l^-$
- □ Charged pion and kaon decays: $\pi^+ \to \mu^+ v A' \to \mu^+ v e^+e^-$ and $K^+ \to \mu^+ v A' \to \mu^+ v e^+e^-$
- □ Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a$ $\rightarrow l^+l^-$

New particles and forces searches

- □ Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and $H \to \mu^+\mu^-$
- □ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell^+ \ell^-$
- □ Protophobic fifth force searches : $\eta \to \gamma X_{17}$ with $X_{17} \to \pi^+\pi^-$
- □QCD axion searches: $η \rightarrow ππa_{17}$ with $a_{17} \rightarrow e^+e^-$
- □*New leptophobic baryonic force searches* : $\eta \rightarrow \gamma B$ *with* $B \rightarrow e^+e^-$ *or* $B \rightarrow \gamma \pi^\circ$
- □Indirect searches for dark photons new gauge bosons and leptoquark: $η \rightarrow μ^+μ$ and $η \rightarrow e^+e^-$
- □ Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-)|_{2M_{\mu}} \rightarrow \gamma e^+e^-$
- □ Lepton Universality
- $\square \eta \rightarrow \pi^{\circ} H \text{ with } H \rightarrow \nu N_2 , N_2 \rightarrow h' N_1, h' \rightarrow e^+ e^-$

Other Precision Physics measurements

- Proton radius anomaly: $\eta \rightarrow \gamma \mu^+\mu^- vs$ $\eta \rightarrow \gamma e^+e^-$
- \square All unseen leptonic decay mode of η / η ' (SM predicts 10^{-6} - 10^{-9})

High precision studies on medium energy physics

- □Nuclear models
- □Chiral perturbation theory
- □*Non-perturbative QCD*
- □ Isospin breaking due to the u-d quark mass difference
- □Octet-singlet mixing angle
- □ *Electromagnetic transition form-factors (important input for g-2)*

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation

- **CP** Violation via Dalitz plot mirror asymmetry: $\eta \to \pi^{\circ} \pi^{\dagger} \pi$
- \Box CP Violation (Type I P and T odd, C even): $\eta \rightarrow 8\gamma$
- \Box CP Violation (Type II C and T odd, P even): $\eta \to \pi^{\circ} \ell^{\dagger} \ell$ and $\eta \to 3\gamma$
- □ Test of CP/invariance via μ longitudinal polarization: $\eta \to \mu^+\mu^-$
- \Box CP inv. via $\gamma*$ polarization studies: $\eta \to \pi^+\pi^-e^+e^- \& \eta \to \pi^+\pi^-\mu^+\mu^-$
- \Box CP invariance in angular correlation studies: $\eta \rightarrow \mu^+\mu^-e^+e^-$
- \Box *CP invariance in angular correlation studies:* $\eta \to \mu^{+}\mu^{-}\pi^{+}\pi^{-}$
- CP invariance in 1 p
- T invar. via μ transverse polariz
- □CPT violation: μ polar πη | π ι

- □ Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$

Non-n/n' based BSM Physics

- □ Neutral pion decay: $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$
- \square *ALP's searches in Primakoff processes:* $p Z \rightarrow p Z a \rightarrow l^+l^-$
- □ Charged pion and kaon decays: $\pi^+ \to \mu^+ \nu A' \to \mu^+ \nu e^+ e^-$ and $K^+ \to \mu^+ \nu A' \to$ $\mu^+ v A' \rightarrow \mu^+ v e^+ e^-$
- □ Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a$ $\rightarrow l^+l^-$

New particles and forces searches

- □ Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and $H \rightarrow \mu^{+}\mu^{-}$
- □ Dark photon searches: $\eta \to \gamma A'$ with $A' \to \ell^+ \ell^-$
- □ Protophobic fifth force searches : $\eta \to \gamma X_{17}$ with $X_{17} \to \pi^+\pi^-$
- \square QCD axion searches: $\eta \to \pi \pi a_{17}$ with $a_{17} \to e^+e^-$
- □New leptophobic baryonic force searches : η → γB with $B → e^+e^-$ or B → $\gamma \pi^{o}$
- □ Indirect searches for dark photons new gauge bosons and leptoquark: η
- P- \pi \mu \tau \cdot \quad \tau \cdot \quad \qu
- □ Lepton Flavor Violation: $η \rightarrow μ^+e^- + c.c.$ □ Radiative Lepton Flavor Violation: $η \rightarrow γμ^+e^- + c$ BSM

 Other Precision Physics measurements

 Other Precision Physics measurements $η \rightarrow γμ^+e^- + c.c.$
 - \square All unseen leptonic decay mode of η / η ' (SM predicts 10^{-6} - 10^{-9})

High precision studies on medium energy physics

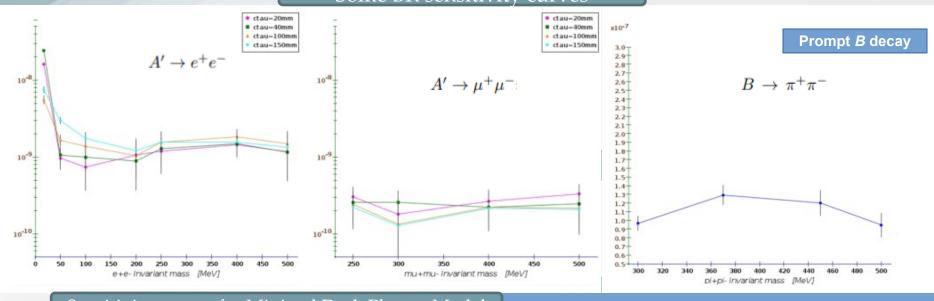
- □Nuclear models
- □Chiral perturbation theory
- □*Non-perturbative QCD*
- □ Isospin breaking due to the u-d quark mass difference
- □Octet-singlet mixing angle
- □ *Electromagnetic transition form-factors (important input for g-2)*

The physics case for REDTOP

Physics case presented in 176-pp White Paper. Sensitivity studies based on ~ 10^{14} η mesons (3.3x10¹⁸ POT and 3-yr run), > $30x10^6$ CPU-Hr on OSG+NICADD

15 processes fully simulated and reconstructed – 20 theoretical models benchmarked

- Four BSM portals
- Three CP violating processes requiring no μ -polarization measurement
- A fourth CP violating processes under study
- Three CP violating processes requiring μ-polarization measurement
- Two lepton flavor universality studies
- Two lepton flavor violation studies


Key detector parameters

- Large sensitivity to <17 Mev mass resonances (compared to WASA and KLOE)
- Tracking capable to reconstruct detached verteces up to ~100 cm
- Sensitivity to BR $\sim \mathcal{O}(10^{-11})$ ($\sim \mathcal{O}(10^{-12})$ with pion beam)
- Detector optimization under way

Vector Portal: $\eta \rightarrow \gamma A'$ with $A' \rightarrow l^+l^-$ or $\pi^+\pi^-$

Sensitivity curves for Minimal Dark Photon Model

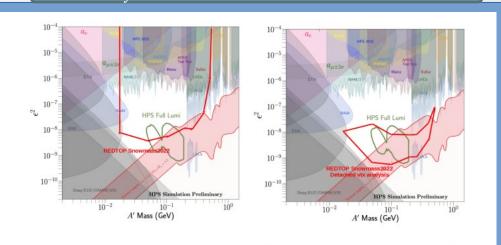
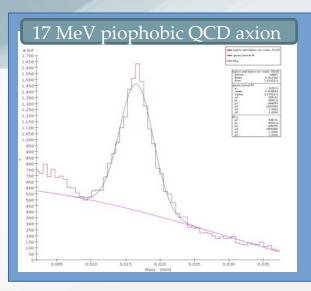
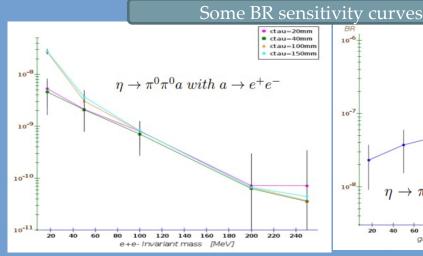
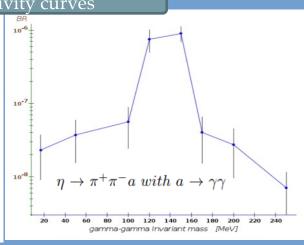
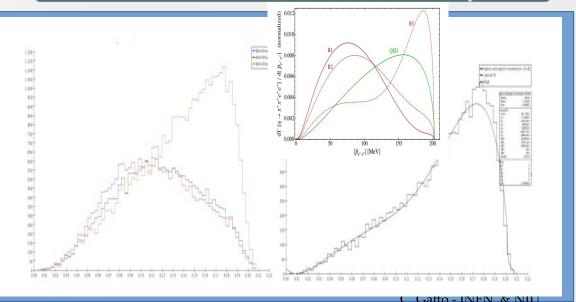


FIG. 36. Sensitivity to to ε^2 for the processes $\eta \to \gamma A'$ for integrated beam flux of 3.3×10^{18} POT. Left plot: bump-hunt analysis. Right plot: detached-vertex analysis).

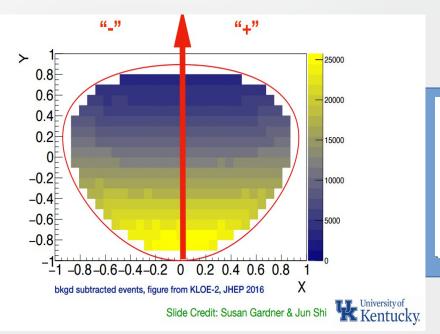

Theoretical Models considered


- ☐ *Minimal dark photon model*
 - Most popular model
 - Leptophobic B boson Model
- Protophobic Fifth Force
 - Explains the Atomki anomaly


Pseudoscalar Portal: $\eta \rightarrow \pi^{\circ} \pi^{\circ} a \& \eta \rightarrow \pi^{+} \pi^{-} a$


with $a \rightarrow \gamma \gamma$, $\mu^+\mu^-$ and e^+e^-

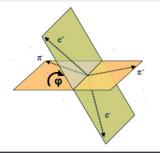
Differential rate for $\eta \rightarrow \pi^+\pi^-$ a for three benchmark params


Theoretical models considered

- Piophobic QCD axion model (D. S. M. Alves)
 - *Below KLOE sensitivity*
 - the CELSIUS/WASA Collaboration observed 24 evts with SM expectation of 10
- Heavy Axion Effective Theories

CP Violation from Dalitz plot mirror asymmetry in $\eta -> \pi^+\pi^-\pi^o$

- \square *CP-violation from this process is not bounded by EDM as is the case for the* $\eta \rightarrow 4\pi$ *process.*
- Complementary to EDM searches even in the case of T and P odd observables, since the flavor structure of the eta is different from the nucleus
- Current PDG limits consistent with no asymmetry
- New model in GenieHad (collaboration with S. Gardner & J. Shi) based on https://arxiv.org/abs/1903.11617



REDTOP sensitivity to model parameters					
#Rec. Events	$Re(\alpha)$	$\operatorname{Im}(\alpha)$	$Re(\beta)$	$\operatorname{Im}(\beta)$	p-value
				5.6×10^{-4}	
Full stat. (no-bkg)	1.9×10^{-2}	2.1×10^{-2}	2.5×10^{-5}	3.2×10^{-5}	17%
Full stat. (100%-bkg)	2.3×10^{-2}	3.0×10^{-2}	3.5×10^{-5}	4.5×10^{-5}	16%

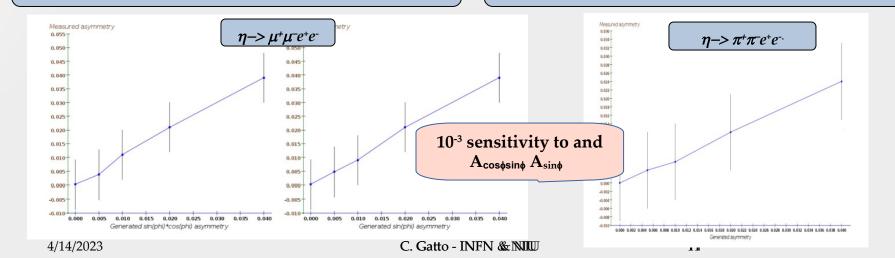
CP Violation from the asymmetry of the decay planes in $\eta -> \mu^+\mu^-e^+e^-$ and $\eta -> \pi^+\pi^-e^+e^-$

- See: Dao-Neng Gao, /hep-ph/0202002 and P. Sanchez-Puertas, JHEP 01, 031 (2019)
- Requires the measurement of angle between pions and leptons decay planes

CP violation is related to asymmetries in

$$\eta -> \mu^+ \mu^- e^+ e^-$$

$$A_{\sin\Phi\cos\Phi} = \frac{N(\sin\phi\cos\phi > 0) - N(\sin\phi\cos\phi < 0)}{N(\sin\phi\cos\phi > 0) + N(\sin\phi\cos\phi < 0)}$$


$$A_{\sin\Phi} = \frac{N(\sin\phi > 0) - N(\sin\phi < 0)}{N(\sin\phi > 0) + N(\sin\phi < 0)}$$

through Wilson coefficients

$$A_{\sin\phi\cos\phi} = \operatorname{Im}\left[1.9c_{\ell edq}^{2222} - 1.3(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{1122})\right] \times 10^{-5} - 0.2\epsilon_1 + 0.0003\epsilon_2$$

CP violation is related to asymmetries in $\eta -> \pi^+\pi^-e^+e^-$

$$A_{\phi} = \frac{N(\sin\phi\cos\phi > 0) - N(\sin\phi\cos\phi < 0)}{N(\sin\phi\cos\phi > 0) + N(\sin\phi\cos\phi < 0)}$$

CP Violation in $\eta \rightarrow (\gamma, \pi^{\circ})\mu^{+}\mu^{-}$

From model: P. Masjuan and P. Sanchez-Puertas, JHEP 08, 108 (2016), 1512.09292 & JHEP 01, 031 (2019), 1810.13228.

\square Requires the measurement of μ -polarization to form the following asymmetries

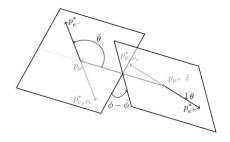


FIG. 11. Kinematics of the process. The decaying muons' momenta in the η rest frame are noted as $p_{\mu^{\pm}}$, while the e^{\pm} momenta, $p_{e^{\pm}}^*$, is shown in the corresponding μ^{\pm} reference frame along with the momenta of the $\nu\bar{\nu}$ system. The \hat{z} axis is chosen along $p_{\mu^{+}}$.

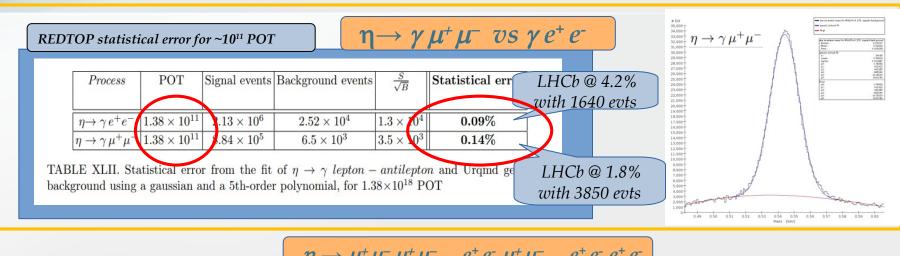
introduced two different muon's polarization asymmetries,

$$A_L = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N} = \text{Im}[4.1c_{\ell edq}^{2222} - 2.7(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-2}, \quad (47)$$

$$A_{\times} = \frac{N(\sin\Phi > 0) - N(\sin\Phi < 0)}{N} = \text{Im}[2.5c_{\ell edq}^{2222} - 1.6(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-3}, \quad (48)$$

REDTOP sensitivity to Wilson CP violating Wilson coefficients

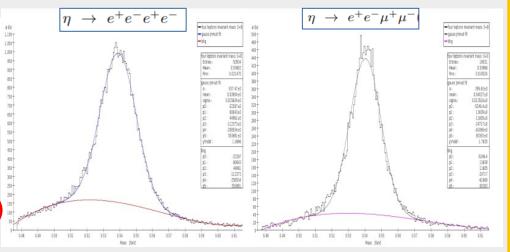
Process	Trigger L0	Trigger L1	Trigger L2	$Reconstruction \\ + \ analysis$	Total	Branching ratio sensitivity
$\eta \to \mu^+ \mu^-$	66.3%	16.3%	51.9%	69.6%	3.9%	$2.7 \times 10^{-8} \pm 3.0 \times 10^{-10}$
Urqmd	21.7%	1.7%	22.2%	$8.6 \times 10^{-3}\%$	$7.0\times10^{-6}\%$	-


$$\Delta(c_{\ell equ}^{1122}) = 0.1 \times 10^{-1}, \quad \Delta(c_{\ell edq}^{1122}) = 0.1, \quad \Delta(c_{\ell edq}^{2222}) = 6.6 \times 10^{-2},$$

4/14/2023

Lepton Universality Studies

LHCb latest results using B⁺ $\rightarrow \mu^{+}\mu^{-}K^{+}$ vs $e^{+}e^{-}K^{+}$: 3.1 σ discrepancy vs SM



$\eta ightharpoonup \mu^+\mu^-\mu^+\mu^-$, $e^+e^-\mu^+\mu^-$, $e^+e^-e^+e^-$

□ Theoretical calculations at the 10⁻³ precision from Kampf, Novotný, Sanchez-Puertas (PR D 97, 056010 (2018))

	REDTOP reconstruction efficiency					
Process	Trigger	Trigger	Trigger	Reconstruction	Analysis	Total
	L0	L1	L2			
$\eta \rightarrow e^+e^-e^+e^-$	96.1%	80.7%	15.5%	63.3%	61.2%	4.5%
$\eta \rightarrow e^+e^-\mu^+\mu^-$	80.4%	57.0%	20.4%	16.6%	52.8%	0.8%
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	45.1%	31.9%	25.5%	61.3%	40.5%	0.9%
Urqmd	21.7%	1.7%	22.2%	$0.9 - 8.2 \times 10^{-4}\%$	17.6%-30.7%	$0.7-6.7 \times 10^{-7}\%$

DEDTOD.	tatiatica	laman fan s	aniona DOT	
KEDI OP S	statistica	i error jor c	various POT	J
Process	POT	Signal events	Statistical error	
$\eta \rightarrow e^+e^-e^+e^-$	4.4×10^{14}	,	0.5%	
$\frac{\eta \to e^+ e^- \mu^+ \mu^-}{\eta \to \mu^+ \mu^- \mu^+ \mu}$	1.6×10^{15} 2.2×10^{18}		0.8% 1.0%	

	Technique	$\eta o 3\pi^{\circ}$	$\eta ightarrow e^+e^-\gamma$	Total η mesons
CB@AGS	$\pi^-p o\eta$ n	9×10 ⁵		10 ⁷
CB@MAMI C&B	$\gamma p \rightarrow \eta p$	1.8×10^6	5000	$2\times10^7+6\times10^7$
BES-III	$e^+e^- \rightarrow J/\psi \rightarrow \eta \gamma + \eta \ hadrons$	6×10 ⁶		$1.1 \times 10^7 + 2.5 \times 10^7$
KLOE-II	e + e - $ ightarrow$ $oldsymbol{\Phi}$	6.5×10 ⁵		~10 ⁹
WASA@COSY	pp→η pp pd→η ³He			>10° (untagged) 3×10° (tagged)
CB@MAMI 10 wk (proposed 2014)	$\gamma p \rightarrow \eta p$	3×10 ⁷	1.5×10 ⁵	3×10 ⁸
Phenix	$d Au \rightarrow \eta X$			5×10 ⁹
Hades	$pp \rightarrow \eta \ pp$ $p \ Au \rightarrow \eta \ X$			4.5×10 ⁸
	Near future	e samples		
GlueX@JLAB (running)	$\gamma_{12\mathrm{GeV}} p \to \eta \ X \to neutrals$			5.5×10 ⁷ /yr
JEF@JLAB (approved)	$\gamma_{12\mathrm{GeV}} p \to \eta \ X \to \mathrm{neutrals}$			3.9×10 ⁵ /day
REDTOP (proposing)	$p_{1.8~GeV}Li o\eta~X$			3.4×10 ¹³ /yr

4/14/2023

C. Galio - Infin & mio

1

Beam Options for $10^{14} \eta$ mesons

Baseline option - medium-energy CW proton beam

vs LHCb@40 MHz

- proton beam on thin Li/Be target: \sim 1.8 GeV 30 W (10¹¹ POT/sec)
- □ Low-cost, readily available (BNL, ESS, FNAL, GSI, HIAF)
- \neg η : inelastic background = 1:200
- Untagged η production

Inelastic interaction rate: ~ 0.7 GHz
Average event multiplicity ≈
4 charged + 4 neutral
η/η′ production rate: ~ 2.3 MHz

Preferred option - low-energy pion beam

- \neg π^+ on Li/Be or π on LH: ~750 MeV 2.5x10¹⁰ π OT/sec
- More expensive but lower background (ESS, FNAL(?), FAIR, HIAF, ORNL)
- \neg η : inelastic background = 1:50 \rightarrow sensitivity to BSM increased by > 2x
- Semi-tagged η production

Inelastic interaction rate: \sim 0.1GHz η/η' production rate: \sim 2.3 MHz

Ultimate option: Tagged $10^{13} \eta$ mesons

- □ high intensity proton beam on De target: ~0.9 GeV; 0.1-1 MW
- Less readily available: (ESS, FAIR, CSNS, ORNL, PIP-II)
- □ Required fwd tagging detector for He₃⁺⁺
- □ Fully tagged production from nuclear reaction: $p+De \rightarrow η +He_3$

Inel. interaction rate: $\sim 13 - 130 \text{ GHz}$ η/η' production rate: $\sim 0.1 - 1 \text{ MHz}$

Beam Options for $10^{14} \eta$ mesons

3 MHz

Baseline option - medium-energy CW proton beam'

vs LHCb@40 MHz

- proton beam on thin Li/Be target: ~1.8 GeV 30 W (1011 POT/sec)
- Low-cost, readily available (BNL, ESS, FNAL, GSI, HIAF)
- η : inelastic background = 1:200

Average event multiplicity ≈
4 charged + 4 neutral

Only ~1% of the proton or pion beam interacts with REDTOP

 π^+ on Li/Be or π on LH: ~750 MeV - 2.5x10¹⁰ π OT/sec

Remaining beam can be used for a downstream pion and/or muon precision on rate: ~ 2.3

Ultimate option: Tagged 10¹³ η mesons

- high intensity proton beam on De target: ~0.9 GeV; 0.1-1 MW
- □ Less readily available: (ESS, FAIR, CSNS, ORNL, PIP-II)
- □ Required fwd tagging detector for He₃⁺⁺
- □ Fully tagged production from neclear reaction: $p+De \rightarrow \eta + He_3$

Inel. interaction rate: ~ 13 - 130 GHz η/η' production rate: ~ 0.1 - 1 MHz

Detector Requirements and Technology

- Sustain 0.7 GHz event rate with avg final state multiplicity of 8 particles
- Calorimetric $\sigma(E)/E \sim 2-3\%/\sqrt{E}$
- High PID efficiency: 98/99% (e, γ), 95% (μ), 95% (π), 99.5%(p,n)
- $\sigma_{tracker}(t) \sim 30psec$, $\sigma_{calorimeter}(t) \sim 80psec$, $\sigma_{TOF}(t) \sim 50psec$
- Low-mass vertex detector
- Near- 4π detector acceptance (as the η/η' decay is almost at rest).

charged tracks detection

LGAD Tracker

- □ 4D track reconstruction for multihadron rejection
- ☐ Material budget < 0.1% r.l./layer

EM + had calorimeter

- ADRIANO2 calorimeter (Calice+T1604)
- Rear section with Fe absorbers
- □ *PFA* + *Dual-readout*+*HG*
- ☐ *Light sensors: SiPM or SPADs*
- □ 96.5% *coverage*

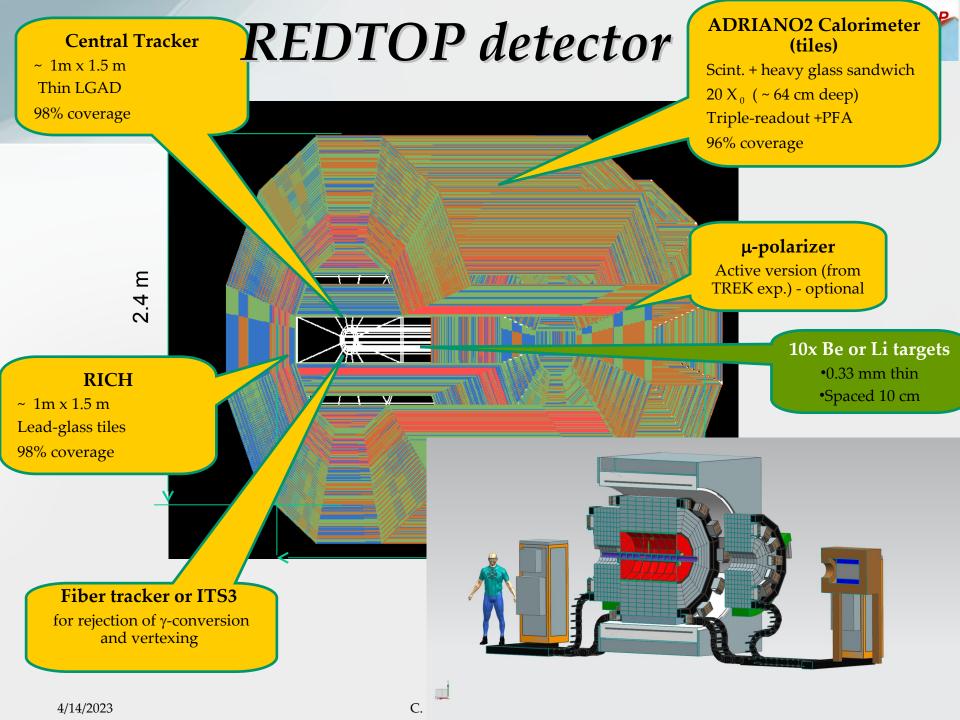
Vertex reconstruction

Option 1: Fiber tracker (LHCb style)

- Established and low-cost technology
- ~70μm vertex resolution in x-y. Stereo layers

Option 2: HV-MAPS (Mu3e style)

- □ Low material budget (0.11%/layer)
- -40μm vertex resolution in 3D


Cerenkov Threshold TOF

Option 1: Quartz tiles

- Established and low-cost technology
- ~50psec timing with T1604 prototype

Option 2: EIC-style LGAD

~30-40 psec timing, but expensive

Subdetector Technologies

	Baseline (White paper)	Options
Target	Li foils: 10x 0.78mm	LH ₂ 11 cm
VTX	LHCb fiber tracker. REDTOP: 0.24m² vs LHCb: 360m²	CMOS (ITS3) or hybrid (fiber+1 layer CMOS)
Central tracker	LGAD 100µm/layer eq., no active cooling (30 psec/layer). REDTOP: 14m ² vs CMS: 16m ²	LGAD 120µm/layer eq., no active cooling (42 psec/layer)
TOF	1 layer 30x30x10 mm ³ JGS1 + Petiroc (50 psec/layer). Area: 3.7 m ²	2 layers, 30x30x10 or 20x20x10 mm ³ JGS1 + Liroc+Tsinghua TDC/PicoTDC (<30 psec/layer). Area: 9.4 m ²
Calorimeter	ADRIANO2: 53 layers 30x30x14 mm ³ SF57/cast scint (80 psec/cell) 800,000 tile pairs	ADRIANO2: 30 layers 30x30x14 mm ³ ZF2/ scint + 23 layers JGS1/Cu/scint (80 psec/cell) 400,000 tile pairs
μ- polarimeter	Not implemented	TBD

Cost estimate

- Three funding scenarios considered
- Largest cost uncertainties
 - ADRIANO2 SiPM's (2x10⁶ 4x10⁶)
 - LGAD mechanics

□ No labor considered (usually, 1/3 of the total)

	Baseline option	Optimized option	Expensive option
Target+beam pipe	0.5	0.5	0.9
Vtx detector	0.93	3.11	25.4
LGAD tracker	18.5	18.5	19.6
CTOF	0.6	1.3	3.0
ADRIANO2	47.7	23.9	4 ⁻ '.7
Solenoid	0.2	0.2	0.2
Supporting structure	1	1	1
Trigger	1.3	1.3	5
DAQ	5	5	5
Total	69.7	54.8	101.8
Contingency 50%	34.9	27.4	50 <mark>.</mark> 9
Grand total	104.6	82.2	152.7

REDTOP Collaboration


```
J. Barn, A. Mane
```

Argonne National Laboratory, (USA)

J. Comfort, P. Mauskopf, D. McFarland, L. Thomas Arizonia Statie University, (USA)

I. Pedraza, D. Leon, S. Escobar, D. Herrera, D. Silverio

Benemérita Universidad Autónoma de Puebla, (Mexico)

Faculty of Science, Cairo University, Giza, (Egypt)

Fairfield University, (USA)

A. Aldahtani

Georgetown University, (USA)

Cairo University, Cairo (Egypt)

Duke University, (USA)

M. Spannowski

Durham University, (UK)

A Lin

Buolid Techlabs, (USA)

J. Dey, V. Di Benedetto, B. Dobrescu, D. Fagan, E. Gianfelice-Wendt, E. Hahn, D. Jensen, C. Johnstone, J. Johnstone, J. Kilmer, G.Krniaic, T. Kobilarcik, A. Kronfeld, K. Krempetz, S. Los, M. May, A. Mazzacane, N. Mokhov, W. Pellico, A. Pla-Dalmau, V. Pronskikh, E. Ramberg, J. Rauch, L. Ristori, E. Schmidt, G. Sellberg, G. Tassotto, Y.D. Tsai

Fermi National Accelerator Laboratory, (USA)

Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter,

South China Normal University, I, Guangzhou 510006, (China)

Harish-Chandra Research Institute, HBNI, Jhunsi (India)

Harvard University, Cambridge, MA (USA)

Indiana University (USA)

P. Sanchez-Puertas

IFAE - Barcelona (Spain)

X Chen D. Hu

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, (Italy)

Istituto Nazionale di Fisica Nucleare - Sezione di Ferrara, (Italy)

R. Carosi, A. Kievsky, M. Miviani

Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, (Italy)

W. Krzemień, M. Silarski, M. Zielinski

Jagiellonian University, Krakow, (Poland)

Laboratoire d'Anne cy-le-Meux de Physique Théorique, (France)

D. S. M. Alvies, S. Gonzalez-Solis de la Fuente, S. Pastore Los Alamos National Laboratory, (USA)

National Centre for Nuclear Research - Warsaw, (Poland)

G. Blazey, A. Dychkant, K. Francis, M. Syphers, V. Zutshii, P. Chintalapati, T. Malla, M. Figora, T. Fletcher Northern Illinois University, (USA)

Oklahoma State University, (USA)

Perimeter Institute for Theoretical Physisos - Waterloo, (Canada)

Physical Research Laboratory, Ahmedabad - Ahmedabad, (India)

Princeton University - Princeton, (USA)

D. McKeen

TRIUMF (Canada)

Tsinghua Uni versity, (China)

Stony Brook University - New York, (USA)

A. Gutiérrez-Rodriguez, M. A. Hemandez-Ruiz Universidad Autónoma de Zacatecas, (Mexico)

R. Escribano, P. Masjuan, E. Royo

Universitat Autônoma de Barcelona, Departament de Filsica and Institut de Física d'Altes Energies, (Spain)

Universität Heidelberg, (Germany)

Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, (Germany)

C. Siligardi, S. Barbi, C. Mugoni. Università di Modena e Reggio Emilia, (Italy)

L. E. Marcuddi*

Universital di Pisa, (Italy)

Università di Salemo, (Italy)

S. Charlebois, J. F. Pratte

Université de Sherbrooke, (Canada)

L. Harland-Lang J. M. Berryman

University of Oxford, (UK)

University of California Berkeley, (USA)

University of California Santa Cruz (USA)

R. Gardner, P. Paschos

University of Chicago, (USA)

J. Konisbera

University of Florida, (USA)

University of Illinois Chicago, (USA)

M. Murray, C. Rogan, C. Royon, Nicola Minafra, A. Novikov, F. Gautier, T. Isidori University of Kansas, (USA)

S. Gardner, X. Yan

University of Kentucky, (USA)

University of Iowa, (USA)

B. Batell, A. Freitas, M. Rai University of Pittsburgh, (USA)

M. Pospelov

University of Minnesota, (USA)

University of Science and Technology of China, (China)

tier Meeting - C. Gatto - INFN & NIU

15 Countries 58 Institutions 127 Collaborators

A. Kupsc, Maja Olvegård

Vanderbilt University, (USA)

York University, (Canada)

B. Fabela-Enriquez

S. Tulin

University of Uppsala, (Sweden)

Future Prospects for REDTOP

Baseline detector layout defined (with options for vtx and µpol detectors)

- Sensitivity studies helped to consolidate the detector requirements
- VTX Fiber Tracker replaced by ITS3-class detector or an hybrid
- Muon polarimeter requires further studies

Next steps:

- <u>Initial funding from US agencies (mid-RI proposal \$2-10M: requires hosting lab)</u>
- Engage the Nuclear Physics community
- Cost optimization (ongoing)
- New sensitivity studies based on a pion beam and rare η' decays (which is also a tagged η-factory!)
- Prepare a CDR to support the proposal of the experiment to one (or more) of the interested laboratories
- Consolidate the detector R&D (ongoing)

Conclusions

- HEP in the next 10 years will focus strongly on the MeV-GeV region
- All meson factories: LHCb, B-factories, Dafne, J/psi have produced a broad spectrum of nice physics. An η/η' factory will do the same
- REDTOP has been designed expressely to study rare processes and to discover physics BSM in the MeV-GeV mass region
- Only experiment (with SHIP) sensitive to four DM portals
- Very large physics reach for NP as well
- New detector techniques benefit the next generation of high intensity experiments
- Beam requirements could be met by several labs in US, Europe, and Asia
 - Before 2030: HIAF and GSI
 - After 2030: Fermilab and ESS

More details: https://arxiv.org/abs/2203.07651

Backup Slides

4/14/2023 C. Gatto - INFN & NIU 24

Why the η meson is special?

It is a Goldstone boson

Symmetry constrains its QCD dynamics

It is an eigenstate of the C, P, CP and G operators (very rare in nature): $I^G J^{PC} = 0^+ 0^-$

It can be used to test C and CP invariance.

All its additive quantum numbers are zero

$$Q = I = j = S = B = L = 0$$

Its decays are not influenced by a change of flavor (as in K decays) and violations are "pure"

All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance.

It is a very narrow state (Γ_{η} =1.3 KeV vs Γ_{ρ} =149 MeV)

EM decays are forbidden in lowest order by C invariance and angular momentum conservation

- Contributions from higher orders are enhanced by a factor of ~100,000
- Excellent for testing invariances

The η decays are flavor-conserving reactions

Decays are free of SM backgrounds for

η is an excellent laboratory to search for physics Beyond Standard Model

η/η' yield and background evaluation

Inelastic p-Li scattering probability (percentage):

Model	$ \begin{array}{c} p\text{-}Li\ cross\ section \\ $	$p ext{-}Li$ interaction prob.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Wellisch & Axen	2.01×10^{-25}	0.710	0.719
Tripathi Light	1.96×10^{-25}	0.693	0.702
Incl++	1.60×10^{-25}	0.567	0.574
Sihver et. al	1.51×10^{-25}	0.535	0.543
Barashenkov	1.73×10^{-25}	0.612	0.620
Shen et. al	2.0×10^{-25}	0.707	0.715
Kox et. al	2.98×10^{-25}	1.06	1.07
Average	$1.98 \pm 0.48 \times 10^{-25}$	0.70 ± 0.17	0.71 ± 0.17

Inelastic interaction rate: ~ 0.7 GHz

Evaluation of η/η' yield for $3.3x10^{18}$ POT (3.3 years running at $1x10^{18}$ POT/yr)

$Nuclear\ collision\ model$	$egin{array}{c} oldsymbol{p+Li} \ \eta egin{array}{c} oldsymbol{yield} \end{array}$
Urqmd [208]	0.49%
Incl++ v6.2 [209]	1.48%
Gibuu v2019 [210]	0.74%
PHSD v 4.0 [211]	0.67%
Jam v1.9 [212]	0.26%
Average	$(0.73 \pm 0.46)\%$

	Total yield for E_{kin} =1.8 GeV
N_{η}	1.1×10^{14}
$N_{\eta'}$	• 0
N_{ni}	2.5×10^{16}

	Total yield for E_{kin} =3.6 GeV
N_{η}	5.9×10^{14}
$N_{\eta'}$	7.9×10^{11}
N_{ni}	3.2×10^{16}

 η/η' production rate: ~ 2.3 MHz

Simulation Framework For Physics&Detector Studies

Event generator: GenieHad

Proprietary (not yet public) package interfacing standalone generators to

genie

Package	Model	Туре
Urqmd [210]	QMD	Microscopic many body approach
Incl++ v6.2 [211]	INCL	Intranuclear cascade
Gibuu v2019 [212]	BUU	time evolution of Kadanoff–Baym-equations
PHSD v 4.0 [213]	HSD	covariant transport with NJL-type Lagrangian
Jam v1.9 [214]	Cascade/RQMD.RMF/BUU	Multi-model - hybrid approach
Dpmjet-III [240]	Dual Parton/ perturbative QCD	Multi-model approach
Pythia 7, 8[239]	LUND	string hadronization model
IAEA tables[241]	LUT of measured cross sections	Look-up tables based on ENDF (by IAEA)
Intranuke[242]	Parametric	
ALPACA[243]	Alpaca	Bremsstrahlung of Axion-Like-Particles (ALPs)

Simulation: slic

- Geant4 interface from SLAC
- Proprietary adds-on for REDTOP specific detectors

Digitization, reconstruction, analysis: lcsim

- Java package from ILC and HPS (jlab)
- Geometry adds-on for REDTOP specific detectors, beam components, and magnetic fields
- Histograms and fitting in Jas3, Jas4app

Some Signal vs Background Acceptance

- □Values from White Paper
- □*QCD* background at TL2: 8x10⁻⁴
- □ Efficiencies and BR sensitivities calculated after reconstruction and analysis
- □Values are very dependence on BSM mass and width

Process	Eff(Bkg)	Eff(signal)	BR sensitivity
$\eta \rightarrow \gamma A'$; $A' \rightarrow e^+e^-$	3x10 ⁻¹⁰ - 4x10 ⁻⁷	8%-22%	1x10 ⁻⁹ -2x10 ⁻⁸
$\eta \to \gamma A' \ ; \ A' \to \ \mu^+ \mu^-$	1x10 ⁻¹¹ -6x10 ⁻⁸	6%-42%	1x10 ⁻¹⁰ -2x10 ⁻⁹
$\eta \rightarrow \pi^0 h$; $h \rightarrow e^+ e^-$	3x10 ⁻¹¹ - 8x10 ⁻⁸	1%-16%	4x10 ⁻¹⁰ -7x10 ⁻⁸
$\eta \to \pi^0 h$; $h \to ~\mu^+ \mu^-$	2x10 ⁻¹¹ -1x10 ⁻⁸	6%-18%	7x10 ⁻¹¹ -4x10 ⁻⁹
$\eta \to \pi^0 \pi^0 alp$; $alp \to e^+e^-$	2x10 ⁻¹¹ -1x10 ⁻¹⁰	0.2%-2.8%	2x10 ⁻¹¹ -2.7x10 ⁻⁸
$\eta \rightarrow \pi^+\pi^-$ axion(17 MeV); axion $\rightarrow e^+e^-$	2.3x10 ⁻⁸	3.0%-3.7%	1.6x10 ⁻⁸ -2.1x10 ⁻⁸
$\eta \to \pi^+\pi^-$ alp; alp $\to \gamma\gamma$	1x10 ⁻¹⁰ -4x10 ⁻⁸	0.6%-1.4%	7x10 ⁻⁹ -5x10 ⁻⁸
$\eta \rightarrow \pi^0 H \; ; \; H \rightarrow \; \nu N_2 ; \; N_2 \rightarrow N_1 h \; ; \; h \rightarrow \; e^+ e^-$	6.8x10 ⁻⁷	1.2%	2.7x10 ⁻⁷

η/η' yield and background evaluation

Inelastic p-Li scattering probability (percentage):

Model	$ \begin{array}{c} p\text{-}Li\ cross\ section \\ $	$p ext{-}Li$ interaction prob.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Wellisch & Axen	2.01×10^{-25}	0.710	0.719
Tripathi Light	1.96×10^{-25}	0.693	0.702
Incl++	1.60×10^{-25}	0.567	0.574
Sihver et. al	1.51×10^{-25}	0.535	0.543
Barashenkov	1.73×10^{-25}	0.612	0.620
Shen et. al	2.0×10^{-25}	0.707	0.715
Kox et. al	2.98×10^{-25}	1.06	1.07
Average	$1.98 \pm 0.48 \times 10^{-25}$	0.70 ± 0.17	0.71 ± 0.17

Inelastic interaction rate: ~ 0.7 GHz

Evaluation of η/η' yield for $3.3x10^{18}$ POT (3.3 years running at $1x10^{18}$ POT/yr)

Nuclear collision model	$m{p}\!+\!m{L}m{i}$
	η yield
Urqmd [208]	0.49%
Incl++ v6.2 [209]	1.48%
Gibuu v2019 [210]	0.74%
PHSD v 4.0 [211]	0.67%
Jam v1.9 [212]	0.26%
Average	$(0.73 \pm 0.46)\%$

	Total yield for E_{kin} =1.8 GeV
N_{η}	1.1×10^{14}
$N_{\eta'}$	• 0
N_{ni}	2.5×10^{16}

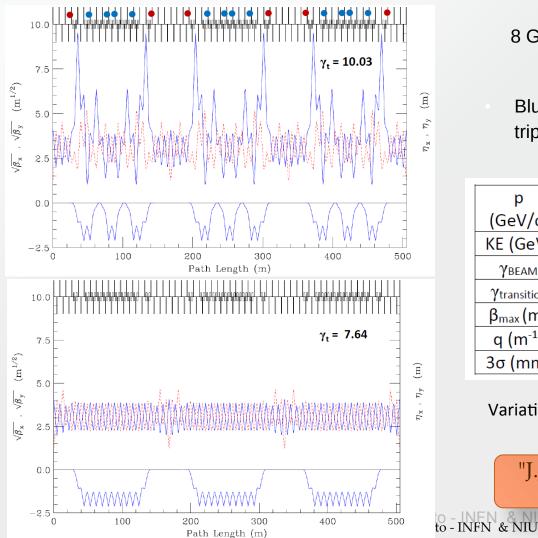
	Total yield for E_{kin} =3.6 GeV
N_{η}	5.9×10^{14}
$N_{\eta'}$	7.9×10^{11}
N_{ni}	3.2×10^{16}

 η/η' production rate: ~ 2.3 MHz

Montecarlo generation of QCD background

Generators comparison

- □ Generate and reconstruct ~2 $x10^9$ p+li → X inelastic events with Incl++ (v6) and Urqmd (v5.3)
- □ Results where within statistical uncrtainties
- □ *Urqmd was selected for its higher reliability at* ~2-3 *GeV*


QCD Production

Source	Storage	#core available	Jobs/yr	Wall hr/yr	Fraction
OSG	100 TB (with peaks of 140 TB)	opportunistic	7x10 ⁶	14x10 ⁶	72%
NICADD	15 TB	500-690	4x10 ⁶	5x10 ⁶	26%
Fermilab- AD	200 TB	350	300K	600K	2%

Ring Optics through Deceleration (J. Johnstone)

Transition is avoided by using select quad triplets to boost γ t above beam γ by 0.5 units throughout deceleration until γ_t = 7.64 and beam γ = 7.14 (5.76 GeV kinetic).

Below 5.76 GeV the DR lattice reverts to the nominal design configuration

8 GeV injection energy (top) and <5.8 GeV (bottom)

Blue & red circles indicate sites of the $\gamma_{\rm t}$ quad triplets.

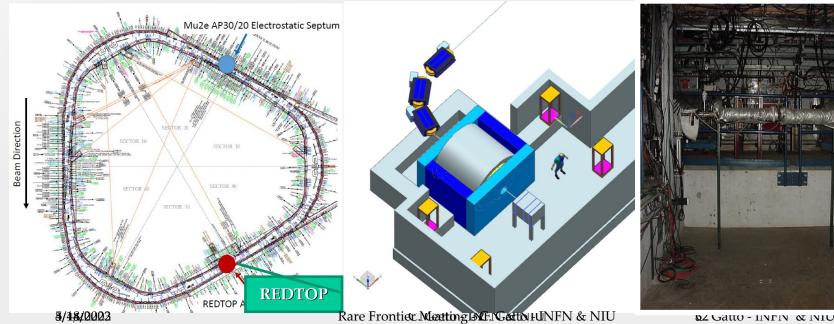
р	8.89	8.33	7.76	7.20	6.63
(GeV/c)					
KE (GeV)	8.00	7.45	6.88	6.32	5.76
γ beam	9.53	8.93	8.33	7.74	7.14
γ transition	10.03	9.43	8.83	7.74	7.64
$\beta_{max}(m)$	94.9	72.5	49.5	30.1	15.1
q (m ⁻¹)	.0697	.0573	.0416	.0236	0.0
3σ (mm)	15.0	13.6	11.6	9.4	6.9

Variation of , $eta_{\mbox{\scriptsize max}}$, and the 15 π 99% beam envelope through deceleration

"J.Johnstone, M.Syphers, NA-PAC, Chicago (2016)"

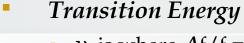
31

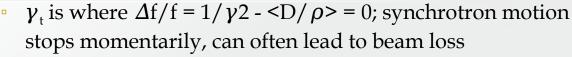
Acceleration Scheme for Run-I (M. Syphers)

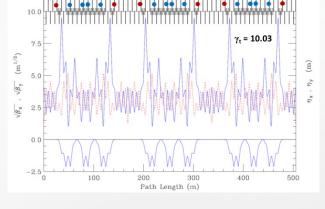

Single p pulse from booster ($\leq 4x10^{12}$ p) injected in the DR (former debuncher in anti-p production at Tevatron) at fixed energy (8 GeV)

Energy is removed by inserting 1 or 2 RF cavities identical to the one already planned (~5 seconds)

Slow extraction to REDTOP over ~40 seconds.


The 270° of betatron phase advance between the Mu2e Electrostatic Septum and REDTOP Lambertson is ideal for AP50 extraction to the inside of the ring.


Total time to decelerate-debunch-extract: 51 sec: duty cycle ~80%



Accelerator Physics Issues

- beam decelerates from $\gamma = 9.5$ to $\gamma = 3.1$
- original Delivery Ring $\gamma_t = 7.6$
- a re-powering of 18 quadrupole magnets can create a γ_t = 10, thus avoiding passing through this condition
 - Johnstone and Syphers, *Proc. NA-PAC 2016*, Chicago (2016).

Resonant Extraction

- Mu2e will use 1/3-integer resonant extraction
- REDTOP can use same system, with use of the spare Mu2e magnetic septum
- initial calculations indicate sufficient phase space, even
 with the larger beam at the lower energies

Vacuum

- REDTOP spill time is much longer than for Mu2e
- though beam-gas scattering emittance growth rate 3 times higher at lower energy, still tolerable level


Beam Options at GSI/FAIR (near future)

Opportunities as fixt target exp.

OPTION A
Fixt target (SIS18)

- HEST towards pion target
- 1e11 p/spill (time structure flexible) at SIS18
- Residual beam might be used for Hades pion program
- Additional shielding and cave need to be evaluated
- High intensity needs exclusive proton operation

OPTION B
Fixt target (SIS100)

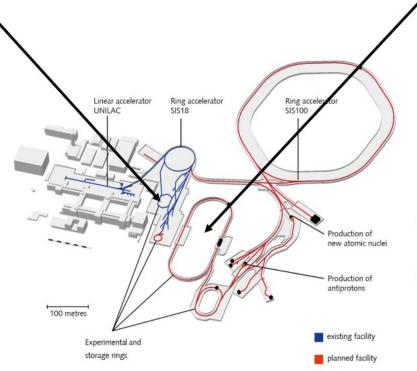
- p-bar target area
- 2e12 p/spill (time structure flexible) at SIS100
- Parallel operation possible due to p-LINAC
- Shielding and cave need to be evaluated
- Actual timeline beyond 2028

FAIR GmbH | GSI GmbH

Beam intensity: 1.8 GeV protons with 1e11/s

Daniel Severin

4/14/2023 C. Gatto - INFN & NIU 34


Beam Options at GSI (far future)

Opportunities as in-ring target exp.

FAIR == it

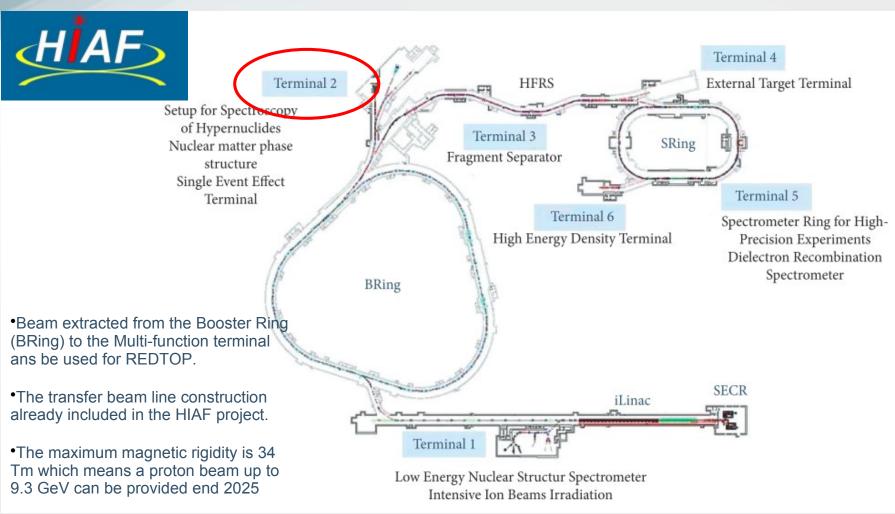
OPTION C ESR (SIS18)

- ESR
- 1e6 p/injection (1-2 MHz revolution rate)
- Full beam usage
- Lower intensity
- Parallel operation of UNILAC and SIS18 exp. possible
- Standard ESR exp. area needs to be dismounted
- Major disruption for the already approved program

experiments

OPTION D HESR (SIS100)

- HESR or CR
- Intensity fully flexible
- Full beam usage
- Parallel operation possible due to p-LINAC
- Standard installation needs to be discussed
 - Actual timeline beyond 2030


FAIR GmbH | GSI GmbH

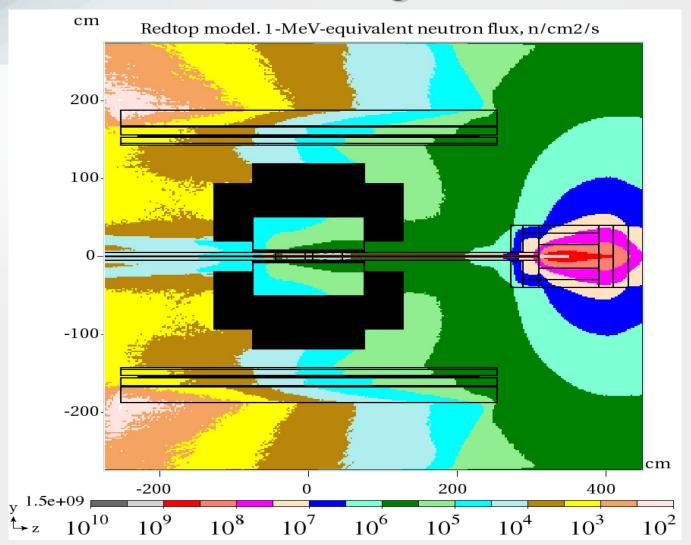
Beam intensity: 1.8 GeV protons with 1e11/s

Daniel Severin

4/14/2023 C. Gatto - INFN & NIU 35

Beam Options at HIAF (near future)

Beam intensity: 0.5 ~1.0x10¹³ ppp (1~5*1x10¹³ pps) in Terminal 2 . 10⁽¹⁸⁻¹⁹⁾ POT/yr
Energy from 2.0 to 9 GeV around 2028 – 2030


Plans are to combine REDTOP with an experiment on hypernuclei

C. Gatto - INFN & NIU

36

4/14/2023

MARS15 Shielding Assesment

Beam dump: $dia-30 \times 80 \text{ cm } Al + 15 \text{ cm } HDPE +5\% B + 10 \text{ cm } Barite$

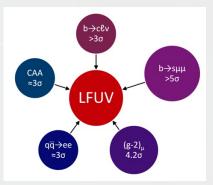
4/14/2023 C. Gatto - INFN & NIU 37

Detector Requirements: BSM physics driven

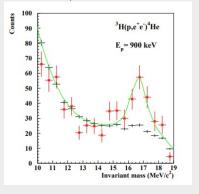
LFU: Tagged lepton production from flavor-conserving decays

• excellent $e/\pi/\mu$ separation

QCD axion


Calorimetric sensitivity to M(γγ)~30MeV

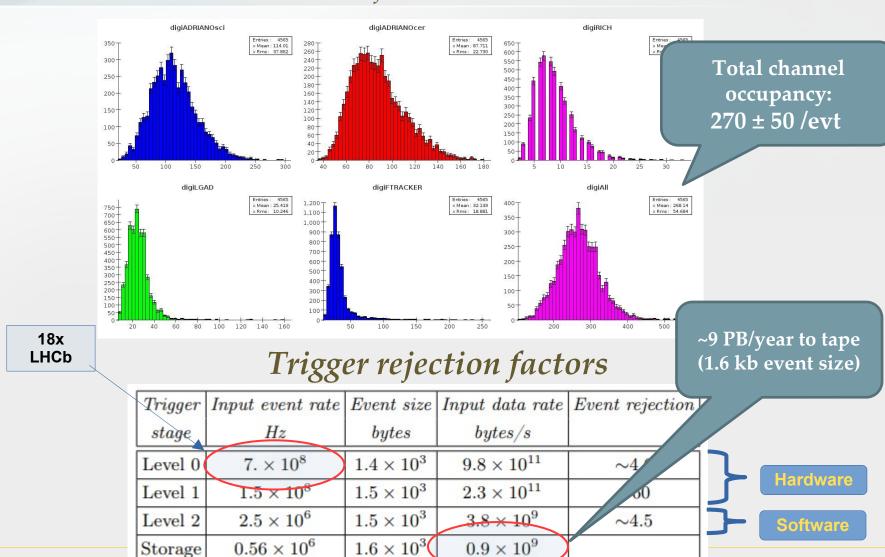
17 MeV e⁺e⁻ state (Atomki experiment)


- Tracker sensitivity to M(e⁺e⁻)~ 20 MeV
- Electron ID at very low energy

CP violation with muons

• Muon polarimeter or high-granularity calorimeter

Mounting Evidence for the Violation of Lepton Flavor Universality https://arxiv.org/pdf/ 2111.12739.pdf (A. Crivellin, M. Hoferichter)



REDTOP Trigger Requirement

Untagged $10^{14} \eta/\eta'$ mesons

Hits from subdetectors

C. Gano - 11 11 11 0 11 11

R&D on ADRIANO2 (from T1604)

