Nuclear short-range correlations with the Generalized Contact Formalism

Ronen Weiss

Los Alamos National Lab

LA-UR-23-23577

GHP 2023, April 13th , 2023

Outline

• The Generalized Contact Formalism (GCF)

- Towards a systematic short-range expansion
 - Three-nucleon correlations
 - Next-order corrections
- Application: $0\nu\beta\beta$ matrix elements

The Generalized Contact Formalism (GCF)

RW, B. Bazak, N. Barnea

• Generalizing Tan's work for atomic systems

S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)

• Starting point – Short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

Universal function (but depends on the potential)

Nucleus-dependent function

 $\varphi(r) \equiv$ Zero-energy solution of the **two-body** Schrodinger Eq.

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

universal function

For any **short-range** two-body operator \hat{O}

•

lacksquare

Two-body dynamics

Simply calculated

Universal for all nuclei

 $\langle \hat{O} \rangle = \langle \varphi | \hat{O}(r) | \varphi \rangle C \qquad C \propto \langle A | A \rangle$ • The "contact"

- Number of correlated pairs
- Depends on the nucleus
- Independent of the operator

RW, *B. Bazak*, *N. Barnea*, *PRC* 92, 054311 (2015)

The nuclear contact relations

RW, B. Bazak, N. Barnea,

PRC 92, 054311 (2015)

A. Schmidt, J.R. Pybus, RW, et 20) al., Nature 578, 540 (2020)

The nuclear contact relations

R. Cruz-Torres, D. Lonardoni, RW, et al., Nature Physics (2020)

Momentum distribution

RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

The nuclear contact relations

Towards a systematic short-range expansion:

Corrections to the GCF

Corrections to the GCF

• GCF is based on the short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

- Possible corrections:
 - Three-body correlations
 - Next-order terms in the description of the pair

RW and S. Gandolfi, arXiv:2301.09605 [nucl-th] (2023)

- There is no clear experimental signal of 3N SRCs
- No ab-initio calculations sensitive to 3N SRC

features

• Factorization?

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(r_{12}, r_{13}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

universal function

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(x_{12}, x_{123}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

• A **single** leading channel:

$$j^{\pi} = \frac{1}{2}^{+}$$
, $t = \frac{1}{2}$

- The same quantum numbers as 3 He
- Therefore, at short-distances we expect:
 - T = 1/2 dominance (over T = 3/2)
 - Universality All nuclei should behave like ³He

Three-body density

Ab-initio calculations – AFDMC (with Stefano Gandolfi):

$$\rho_3(r_{12}, r_{13}, r_{23}) \equiv \binom{A}{3} \langle \Psi | \delta(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) \delta(|\mathbf{r}_1 - \mathbf{r}_3| - r_{13}) \delta(|\mathbf{r}_2 - \mathbf{r}_3| - r_{23}) | \Psi \rangle$$

- Projections to $T = \frac{1}{2}$ and $T = \frac{3}{2}$
- N2LO(R = 1.0 fm)E1 local chiral interaction
- Nuclei: ³He, ⁴He, ⁶Li, , ¹⁶O

Three-body density

 $T = \frac{1}{2}$ universality: rescaled densities

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Can be compared to inclusive cross section ratios (in the appropriate kinematics)

$$a_{3}(A) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^{3}He} + \sigma_{e^{3}H})/2}$$

For a symmetric nucleus A

$$a_3(A) = \frac{3}{A} \frac{C(A)}{C(^{3}\text{He})}$$

Future work:

- Dominant configurations
- Model dependence Additional interactions
- Sensitivity to three-body force, tensor force
- Impact on momentum distributions
- Spectral function, electron scattering...

Subleading terms for SRC pairs: Beyond factorization

RW et. al., in preparation

• Exact expansion:

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\boldsymbol{r}_{12}) A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE} \varphi_{\alpha}^{E=0}(\boldsymbol{r}) \right) A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^2}{dE^2} \varphi_{\alpha}^{E=0}(\boldsymbol{r}) \right) A_{\alpha}^{(2)} + \cdots$$

• Two-body density:

$$\rho_{2}(r) = \sum_{\alpha} \left(\left| \varphi_{\alpha}^{E=0}(r) \right|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)^{2} \right)$$

• Subleading contacts:

$$C^{mn}_{\alpha} \propto \langle A^{(m)}_{\alpha} | A^{(n)}_{\alpha} \rangle$$

$$\rho_2(r) = \sum_{\alpha} \left(\left| \varphi_{\alpha}^{E=0}(r) \right|^2 \mathcal{C}_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) \mathcal{C}_{\alpha}^{01} + \cdots \right)$$

• Power counting is needed

- Two relevant parameters:
 - Number of energy derivatives
 - Orbital angular momentum (*s*, *p*, *d*, ...)

$$\rho_{2}(r) = \sum_{\alpha} \left(\left| \varphi_{\alpha}^{E=0}(r) \right|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)^{2} \right)$$

• Neutron matter:

AFDMC by Diego Lonardoni & Stefano Gandolfi: AV4' n = 0.16 fm⁻³

$$\begin{array}{c}
1.2 \\
1.0 \\
0.8 \\
0.6 \\
0.4 \\
0.2 \\
0.0 \\
0.2 \\
0.0 \\
0.2 \\
0.0 \\
0.5 \\
1.0 \\
1.5 \\
2.0 \\
2.5 \\
3.0 \\
3.5 \\
4.0 \\
r [fm]
\end{array}$$

 $(S + \ell = \text{Even})$ s-wave: $\ell = 0, S = 0, j = 0$ p-wave: $\ell = 1, S = 1, j = 0/1/2$

Short-range expansion $\rho_{2}(r) = \sum_{\alpha} \left(\left| \varphi_{\alpha}^{E=0}(r) \right|^{2} \mathcal{C}_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) \mathcal{C}_{\alpha}^{01} + \cdots \right)$ Neutron matter: 1.2 1.0 AFDMC by I Good description over larger and larger distances & Stefan AV4' n = Using only two-body wave-functions More quantities can be calculated! Subleading corrections to previous results Connecting SRC experiments to more general framework $(S + \ell = \text{Even})$ • Motivate new experimental data (e.g., spin measurement) s-wave: $\ell = 0, S =$ *p*-wave: $\ell = 1, S = 1, j = 0/1/2$

Application: Neutrinoless double beta decay

RW, P. Soriano, A. Lovato, J. Menendez, R. B. Wiringa, PRC 106, 065501 (2022)

Neutrinoless double beta decay $nn \rightarrow pp + 2e$

Measurement of the decay will provide information about:

- Majorana nature of neutrinos
- Matter dominance of the universe
- Neutrino mass

. . .

Nuclear matrix elements (NMEs) are needed

⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Our approach: GCF-SM method

solution for light nuclei

physics

physics

NMEs and transition densities

Light Majorana neutrino exchange mechanism

$$M^{0\nu} = \langle \Psi_f | O^{0\nu} | \Psi_i \rangle$$

 $O^{0\nu} = O_F^{0\nu} + O_{GT}^{0\nu} + O_T^{0\nu} + O_S^{0\nu}$

V. Cirigliano, et. al., PRL 120, 202001 (2018)

Results – heavy nuclei (AV18)

• Transition densities (using A = 6, 10, 12 to predict heavy nuclei):

Results – heavy nuclei (AV18)

$$M_F + M_{GT} + M_T$$

Significant reduction due to SRCs

Summary

- Leading-order GCF provides consistent and comprehensive description of shortrange correlated pairs $\Psi(r_1, r_2, ..., r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1,2})$
- **3N SRCs** clear signal of correlated triplets
 - Wave function factorization
 - Single leading channel $j^{\pi} = \frac{1}{2}^{+}$, $t = \frac{1}{2}^{+}$
 - Universal behavior of SRC triplets
 - Extracted scaling factors 3N contact ratios
 Relevant for inclusive scattering (a₃)

Summary

• **Short-range expansion** – subleading terms

$$\rho_2(r) = \sum_{\alpha} \left(\left| \varphi_{\alpha}^{E=0}(r) \right|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

- Systematic expansion
- Valid for larger distances
- More observables can be described
- Improved data analysis
- Motivates new experiments
- Application: $0\nu\beta\beta$ NME

BACKUP

Main channels:

The **deuteron** channel: $\ell_2 = 0,2$; $s_2 = 1$; $j_2 = 1$; $t_2 = 0$

The **spin-zero** channel: $\ell_2 = 0$; $s_2 = 0$; $j_2 = 0$; $t_2 = 1$

RW, *B. Bazak*, *N. Barnea*, *PRC* 92, 054311 (2015)

This factorized form can be derived using:

- RG arguments S. K. Bogner and D. Roscher, Phys. Rev. C 86, 064304 (2012). A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C 104, 034311 (2021)
- Coupled Cluster expansion S. Beck, RW, N. Barnea, arXiv:2212.13412 [nucl-th] (2022)

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

$$\Psi \xrightarrow{\boldsymbol{r}_{ij \to 0}} \sum_{\alpha} \varphi_{ij}^{\alpha}(\boldsymbol{r}_{ij}) A_{ij}^{\alpha}(\boldsymbol{R}_{ij}, \{\boldsymbol{r}_k\}_{k \neq i,j}) \quad ; \quad \boldsymbol{C}_{ij}^{\alpha\beta} \propto \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

The universal functions using the AV18 potential

Two-body density

Shows the validity of the factorization

One-body momentum distribution

$$n_{p}(k) \xrightarrow[k \to \infty]{} \frac{C_{pn}^{d}}{\varphi_{pn}^{d}(k)} \Big|^{2} + \frac{C_{pn}^{0}}{\varphi_{pn}^{0}(k)} \Big|^{2} + 2C_{pp}^{0} \Big| \varphi_{pp}^{0}(k) \Big|^{2}$$

No fitting parameters!

RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

Two-body momentum distribution

Relative momentum distribution

Two-body momentum distribution

Relative momentum distribution

R. Cruz-Torres, D. Lonardoni, RW, et al., arXiv: 1907.03658 [nucl-th], Nature physics (2020)

Consistency: k-space vs r-space

R. Cruz-Torres, D. Lonardoni, RW, et al., arXiv: 1907.03658 [nucl-th], Nature physics (2020)

- A(e, e'N) and A(e, e'NN) cross sections
- In PWIA described using the spectral function (the probability to find nucleon with momentum *p*₁ and energy ε₁ in the nucleus)

• Using the GCF:

$$S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C_{pn}^{1} S_{pn}^{1}(\boldsymbol{p_{1}}, \epsilon_{1}) + C_{pn}^{0} S_{pn}^{0}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C_{pp}^{0} S_{pp}^{0}(\boldsymbol{p_{1}}, \epsilon_{1})$$
$$(p_{1} > k_{F})$$

RW, I. Korover, E. Piasetzky, O. Hen and N. Barnea, PLB 791, 242 (2019)

Data from: PRL 113, 022501 (2014)

• Good description of experimental data:

I. Korover et al., arXiv:2004.07304 (2020)

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(x_{12}, x_{123}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

Three-body wave functions – Quantum numbers: π , *j*, *m*, *t*, *t_z*

• S-wave dominance at short distances
$$\ell = 0 \implies \pi = +$$

• Spin
$$S = \frac{1}{2}, \frac{3}{2} + \ell = 0 \implies j = \frac{1}{2}, \frac{3}{2}$$

• Isospin
$$t = \frac{3}{2}$$
 (symmetric function) – suppressed due to Pauli blocking

• Spin
$$S = \frac{3}{2}$$
 (symmetric function) – suppressed due to Pauli blocking

t = 1/2

'2

Three-body density

 $T = \frac{3}{2}$ universality: rescaled densities

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Sargsian et al predicted [PRC 100, 044320 (2019)]:

$$a_3(A) = 1.12 \frac{a_2(A)^2}{a_2({}^{3}\text{He})^2}$$
 $a_3({}^{4}\text{He}) \approx 3.15$

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Additional effects might be important:

- CM motion of the triplet in nucleus A
- Energy of the A 3 system
- Contribution of t = 3/2 triplets (*e.g.*: *ppp*, *nnn*)

• Factorization for short distances

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

- $\varphi(r) \equiv$ Zero-energy solution of the two-body Schrodinger Eq.
- The two-body system:

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi^E(r) = E\varphi^E(r)$$

• For $r \to 0$: The energy becomes negligible

• The two-body system:

$$-\frac{\hbar^2}{m}\nabla^2 + V(r)\bigg]\varphi^E(r) = E\varphi^E(r)$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$
GCF
leading term
Next-order
terms

• The two-body system:

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi^E(r) = E\varphi^E(r)$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$
GCF
leading term
At short distances:
energy derivative is small
Short-range expansion

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

AV4' Deuteron channel Scattering state

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{E, \alpha} \varphi_{\alpha}^E(\boldsymbol{r}_{12}) A_{\alpha}^E(\boldsymbol{R}_{12}, \boldsymbol{r}_3, \dots, \boldsymbol{r}_A) \qquad (\alpha - \text{quantum numbers})$$

• Taylor expansion around E = 0:

$$\varphi_{\alpha}^{E}(\mathbf{r}) = \varphi_{\alpha}^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

GCF factorization

Next-order terms

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

Short-range expansion: Next order terms

The many-body case:

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

$$A_{\alpha}^{(0)}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A}) = \sum_{E} A_{\alpha}^{E}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A})$$

$$A_{\alpha}^{(1)}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A}) = \sum_{E} E A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A})$$

$$A_{\alpha}^{(2)}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A}) = \frac{1}{2!} \sum_{E} E^{2} A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A})$$

GCF-SM: Short distances (r < 1 fm)

• New contacts

$$C(f,i) = \frac{A(A-1)}{2} \langle A(f) | A(i) \rangle$$

 $\rho_{\alpha}^{0\nu}(r) \propto |\phi(r)|^2 C(f,i)$

Contact values are extracted based on model independence of ratios

$$\frac{C^{V_1}(X)}{C^{V_1}(Y)} = \frac{C^{V_2}(X)}{C^{V_2}(Y)}$$

Model independence of contact ratios

• For $0\nu 2\beta$:

$$\frac{C^{AV18}(f_1, i_1)}{C^{AV18}(f_2, i_2)} = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)}$$

$$C^{AV18}(f_1, i_1) = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)} C^{AV18}(f_2, i_2)$$

• For example $C^{AV18}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se}) = \frac{C^{SM}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se})}{C^{SM}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})}C^{AV18}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})$ Exact QMC calculations

Validation using light nuclei (AV18)

Using ⁶He \rightarrow ⁶Be and ¹⁰Be \rightarrow ¹⁰C to "predict" ¹²Be \rightarrow ¹²C

Short distances - GCF

Long distances – Shell model

NMEs and transition densities

Light Majorana neutrino exchange mechanism

$$M^{0\nu} = \langle \Psi_f \left| O^{0\nu} \right| \Psi_i \rangle$$

$$O^{0\nu} = O_F^{0\nu} + O_{GT}^{0\nu} + O_T^{0\nu} + O_S^{0\nu}$$

$$4\pi r^2 \rho_F(r) = \langle \Psi_f | \sum_{a < b} \delta(r - r_{ab}) \tau_a^+ \tau_b^+ | \Psi_i \rangle$$

$$C^{0\nu}_{\alpha}(r) \equiv (8\pi R_A) 4\pi r^2 \rho_{\alpha}(r) V^{0\nu}_{\alpha}(r)$$

$$M^{0\nu}_{\alpha} = \int_0^\infty dr \, C^{0\nu}_{\alpha}(r)$$

Model independence of contact ratios

 $C^{V_2}(X)$ $C^{V_1}(X)$ C^{V_1}