A coupled channel analysis of $e^{+} e^{-}$ annihilation in the bottomonium region

Nils Hüsken, Ryan Mitchell, Eric Swanson
10th Workshop of the APS Topical Group on Hadron PRysics: Minneapolis, April 14th 2023

MOTIVATION

 ㄷ ＂ロロロ＂

MOTIVATION

- we seek a comprehensive, unitary analysis of all channels contributing to $e^{+} e^{-} \rightarrow b \bar{b}$
- extract the properties of Υ-states above $B \bar{B}$ threshold
thus far, masses and widths limited to Breit-Wigner,
Gaussian
branching ratios limited to $B R_{i}=\frac{\sigma_{i}}{\sigma_{t o t}}\left(\sqrt{s}=m_{\text {peak }}\right)$ (only valid if peak is isolated)
- new data highlights importance of thresholds, so fits should move beyond sums of Breit-Wigners
- investigate $\Upsilon(10753)$, potentially exotic state recently seen by Belle JHEP 10 (2019) 220

MOTIVATION

- we seek a comprehensive, unitary analysis of all channels contributing to $e^{+} e^{-} \rightarrow b \bar{b}$
- extract the properties of Υ-states above $B \bar{B}$ threshold
- thus far, masses and widths limited to Breit-Wigner, Gaussian
- branching ratios limited to $B R_{i}=\frac{\sigma_{i}}{\sigma_{\text {tot }}}\left(\sqrt{s}=m_{\text {peak }}\right)$ (only valid if peak is isolated)
- new data highlights importance of thresholds, so fits should move beyond sums of Breit-Wigners
- investigate $\Upsilon(10753)$, potentially exotic state recently seen by Belle jhep 10 (2019) 220

MOTIVATION

- we seek a comprehensive, unitary analysis of all channels contributing to $e^{+} e^{-} \rightarrow b \bar{b}$
- extract the properties of Υ-states above $B \bar{B}$ threshold
- thus far, masses and widths limited to Breit-Wigner, Gaussian
- branching ratios limited to $B R_{i}=\frac{\sigma_{i}}{\sigma_{\text {tot }}}\left(\sqrt{s}=m_{\text {peak }}\right)$ (only valid if peak is isolated)
- new data highlights importance of thresholds, so fits should move beyond sums of Breit-Wigners
investigate $\Upsilon(10753)$, potentially exotic state recently seen by Belle JHEP 10 (2019) 220

MOTIVATION

- we seek a comprehensive, unitary analysis of all channels contributing to $e^{+} e^{-} \rightarrow b \bar{b}$
- extract the properties of Υ-states above $B \bar{B}$ threshold
- thus far, masses and widths limited to Breit-Wigner, Gaussian
- branching ratios limited to $B R_{i}=\frac{\sigma_{i}}{\sigma_{\text {tot }}}\left(\sqrt{s}=m_{\text {peak }}\right)$ (only valid if peak is isolated)
- new data highlights importance of thresholds, so fits should move beyond sums of Breit-Wigners
- investigate $\Upsilon(10753)$, potentially exotic state recently seen by Belle JHEP 10 (2019) 220

FORMALISM

FORMALISM

- cross section for $e^{+} e^{-} \rightarrow$ two-body final state:

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu\right)=\frac{1}{16 \pi s} \frac{k_{\mu}}{k_{e e}} \overline{\left|\mathcal{M}_{\mu, e e}\right|^{2}}
$$

- cross section for $e^{+} e^{-} \rightarrow$ three-body final state:

$$
d \sigma=\frac{1}{(2 \pi)^{3}} \frac{1}{64 s \sqrt{s} k_{i}} \overline{\left|\mathcal{M}_{345: 12}\right|^{2}} d m_{12}^{2} d m_{23}^{2}
$$

FORMALISM

K-matrix formalism:

EPJ C80 (2020) 5, 453
PRD 91, no. 5 (2015) 054008
PRD 16 (1977) 657

$$
\begin{aligned}
\mathcal{M} & =(1+K C)^{-1} K=K(1+C K)^{-1} \\
& =K(K+K C K)^{-1} K . \quad \text { Chew-Mandelstam }
\end{aligned}
$$

$K_{\mu, \nu}=\sum_{R} \frac{g_{R: \mu} g_{R: \nu}}{m_{R}^{2}-s}+f_{\mu, \nu}$

Aitchison's P-vector approach:

$$
\underset{\substack{\text { in restricted channel space } \\\left(g_{\text {Reee }}<g_{\text {Rhad }}\right)}}{\mathcal{M}_{\mu, e e}}=\sum_{\nu}(1+\hat{K} \hat{C})_{\mu, \nu}^{-1} P_{\nu}=K_{\nu, e e}
$$

FORMALISM

K-matrix formalism:

PRD 91, no. 5 (2015) 054008
PRD 16 (1977) 657
$\mathcal{M}=(1+K C)^{-1} K=K(1+C K)^{-1}$
$=K(K+K C K)^{-1} K$.
Chew-Mandelstam
couplings:

$$
g_{R: \mu}(s)=\hat{g}_{R: \mu}\left(\frac{k_{\mu}(s)}{\beta}\right)^{\ell_{\mu}} \cdot \exp \left[-k_{\mu}^{2}(s) / \beta^{2}\right]
$$

$$
f_{\mu, \nu}=\hat{f}_{\mu, \nu} \cdot\left(\frac{k_{\mu}(s)}{\beta}\right)^{\ell_{\mu}} \cdot\left(\frac{k_{\nu}(s)}{\beta}\right)^{\ell_{\nu}} \cdot \exp \left[-\left(\frac{k_{\nu}^{2}(s)+k_{\mu}^{2}(s)}{\beta^{2}}\right)\right]
$$

we test $\beta=0.8,1.0,1.2 \mathrm{GeV}$

$$
\mathcal{M}_{\mu, e e}=\sum_{\nu}(1+\hat{K} \hat{C})_{\mu, \nu}^{-1} P_{\nu} \uparrow_{\substack{\text { in restricted channel space } \\\left(g_{R: e e} \ll g_{R: h a t}\right)}} P_{\nu}=K_{\nu, e e}
$$

sketches from E. Swanson, CIPANP 2022

FORMALISM

Three-body channels:
(1) pretend they are two-body channels (as is commonly done)

(2) perturbative treatment
(similar to Aitchison's P-vector, but for final state)

"final state matrix" coupling two- to three-body channels

FORMALISM

Three-body channels:
(1) pretend they are two-body channels (as is commonly done)
(2) perturbative treatment
(similar to Aitchison's P-vector, but for final state)
 „final state matrix" coupling two- to three-body channels

Three-body models:
(2a) non-resonant production

$$
F_{\mu}^{(\Delta)}=f_{\Delta: \mu}
$$

(2b) resonant production

$$
F_{\mu}^{(\Delta)}=\sum_{R} \frac{g_{R: \Delta} g_{R: \mu}}{m_{R}^{2}-s}
$$

(2c) including intermediate states
$F_{\mu}^{(\Delta=\pi \pi \Upsilon)}=\frac{g_{R: \mu} \cdot g_{R: f_{0} \Upsilon} \cdot g_{f_{0}: \pi \pi}}{\left(m_{R}^{2}-s\right)\left(m_{f_{0}}^{2}-s_{\pi \pi}\right)}$

RESULTS

FIT RESULTS

- data
- quasi two-body model, $\beta=1.0 \mathrm{GeV}$68\% CL90\% CL
(a-c): JHEP 06 (2021) 137
(e): arXiv:1609.08749
(f-h): JHEP 10 (2019) 220, PRD96 (2017) 052005
(i-j): PRL117 (2016) 14, 142001
(k, l): CPC 44 (2020) no. 8083001

here, $\sigma_{b b}=\sum_{i} \sigma_{i}^{e x c l}$

FIT RESULTS

- data
- quasi two-body models
- three-body resonant
- three-body non-resonant
\rightarrow model variation recapitulates bootstrap variation

here, $\sigma_{b b}=\sum_{i} \sigma_{i}^{e x c l}$

FIT RESULTS

- identify poles in the complex plane
- partial widths from pole residues
- stat. uncertainties from bootstrapping
- identify ghost poles from pole trajectories (with $g^{\prime}=\lambda g, \lambda \rightarrow 0$)

$B \bar{B} B^{*} \bar{B} B^{*} \bar{B}^{\star}$

FIT RESULTS

- identify poles in the complex plane
- partial widths from pole residues
- stat. uncertainties from bootstrapping
- identify ghost poles from pole trajectories (with $g^{\prime}=\lambda g, \lambda \rightarrow 0$)

FIT RESULTS
$\Upsilon(10860)$

$\Upsilon(11020)$

PDG: $\mathrm{BR}_{\mathrm{i}}=\frac{\sigma\left(e^{+} e^{-} \rightarrow i\right)}{\sigma\left(e^{+} e^{-} \rightarrow b b\right)}$

FIT RESULTS
$\Upsilon(10860)$

$\Gamma_{\text {ete }^{+}}(\mathrm{keV})$ 3-body non-resonant

FIT RESULTS
$\Upsilon(10860)$
$\Gamma_{\mathrm{e}^{+} \mathrm{e}^{-}}(\mathrm{keV})$

1

FIT RESULTS

FIT RESULTS

WHAT DO WE CONCLUDE?

- first comprehensive analysis of $e^{+} e^{-} \rightarrow b \bar{b}$
- first determination of absolute BR
- before $B R_{i} \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow i\right)}{\sigma\left(e^{+} e^{-} \rightarrow b \bar{b}\right)}$, assuming Υ-states to be isolated
- we need a $\Upsilon(10753)$, but its parameters are currently not well determined
- conventional $\Upsilon(3 D)$ within large range of possibilities
- additional around 10.75 GeV would be beneficial \rightarrow Bellell
- we find $\Upsilon(4 S)$ mass about $10-20 \mathrm{MeV}$ higher than PDG, $\Upsilon(11020)$ about twice as broad
- electronic widths $\Gamma_{e^{+} e^{-}}$significantly smaller than previously thought
- missing channels: measurements of $e^{+} e^{-} \rightarrow B^{*} \bar{B}^{(*)} \pi$ would be helpful (promising?)

Thank you for your attention!

曲

johannes GUTENBERG UNIVERSITȦT MAINZ

