

Bridge Simulation to Experiments: Unsupervised Unpaired Data Translation between Domains

Yihui "Ray" Ren (yren@bnl.gov)

Computational Science Initiative (CSI), BNL Dmitrii Torbunov, Yi Huang, Haiwang Yu, Jin Huang, Shinjae Yoo, Meifeng Lin, Brett Viren **10th workshop of the APS Topical Group on Hadronic Physics** Apr 12 – 14, 2023 NASA Space Radiation Lab

> Brookhaven Linac Isotope Producer

Superconducting Magnet Division

Physics

FIEL

Chemistry

E.

Biology

Environment, Nonproliferation, And More Relativistic Heavy Ion Collider, future Electron-Ion Collider

nstrumentation

Division

Interdisciplinary

Science Building

Accelerator Test Facility

Computational Science Initiative

Center for Functional

Nanomaterials

Northeast Solar Energy Research Center

> Long Island Solar Farm

National Synchrotron Light Source II

Computer Science Initiative (CSI) at BNL

Departments:

- Scientific Data and Computing Center (SDCC)
- Computation and Data-Driven Discovery (C3D)
- Computing for National Security
- Computational Science Laboratory (HPC, Quantum)
- <u>Computer Science and Applied Mathematics</u> (<u>ML</u>, Math)

Machine Learning Group

Personnel:

- Shinjae Yoo (Group Leader)
- 8 staff scientists
- 7 postdocs (+2 onboarding)
- 3 software engineers

Project range:

- ASCR, BER, OE, NP, HEP
- NNSA, SciDAC
- LDRD

Motivation

We aim to reduce Simulation & Experiment Data discrepancies.

"All models are wrong, but some are useful". George E. P. Box

Simulations:

- Can get the fundamentals correct,
- Inexpensive to run,
- Freedom of choosing parameters.

Experiments:

- Evidence for scientific advancement,
- Very expensive to run,
- "Ground truth" unknown

Gap: there are multiple discrepancies between the simulated and the real data.

Motivation

- Cause: difference between two data distributions
- Existing remedies:
 - Data Augmentation. (Heuristics, domain-agnostic, use case-dependent.)
 - Domain Adaptation. (Task-specific, required trained model, require data annotation.)
 - Transfer Learning. (Require data annotation.)

- Cause: Difference between two data distributions
- Existing Remedies:
 - Data Augmentation.
 - Domain Adaptation.
 - Transfer Learning.

Unpaired Unsupervised Data Domain Translation.

	Task	Model	Domain	Source Domain	Target Domain
	Agnostic	Agnostic	Aware	Label Free	Label Free
Heuristic Data Augmentation			×		N/A
Domain Adaptation (DA)	×	×		X	×
Unsupervised DA	×	×		X	
Transfer Learning	×	×		×	×
Data Domain Translation (Ours)					

- $A \rightarrow B$: "Augmented High-Fidelity Simulation" that can produce "labeled" data.
- $B \rightarrow A$: "Data Cleaning" that can remove noise of experiment data.
- Analysis tools (w/ human-intelligence) can have better and more data to work with.
- ML models have labeled data to train and are easier to transfer to the real data.

DUNE and LArTPC

Deep Underground Neutrino Experiment (DUNE) is an experiment funded by US DOE, CERN and other international partners.

A far detector based on **liquid argon time projection chamber** (LArTPC) technology will reside in Homestake mine, South Dakota.

DUNE and LArTPC

- Charged particles leave clouds of electrons in the detector.
- The clouds of electrons slowly drift towards the wire-planes under the influence of the strong electric field.
- Metallic wires record electric excitations caused by the bypassing electrons.

DUNE and LArTPC

Before doing this on real data, we would like to study a task under well-understood settings:

- Domain A simplified detector response, where a cloud of electrons is read only by the nearest wire.
- 2. Domain B realistic detector response, where a cloud of electrons can produce excitations in multiple wires.

Since the ground truth of the experimental data is unknown, it's impossible to generate matched simulation images.

A popular way for generative tasks is GAN (generative adversarial networks).

- However, GAN is prone to "mode collapse".
- The generator figured out some "loophole" modes that can always fool the discriminator. So, it translates all input into one of these modes disregarding the input image.

(a) Domain A

(b) Translated to Domain B

CycleGAN connects two sets of Generator and Discriminator.

* "<u>Unpaired Image-to-Image Translation Using Cycle-Consistent</u> <u>Adversarial Networks</u>" Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Proceedings of the ICCV 2017

CycleGAN connects two sets of Generator and Discriminator. And requires a "Cycle-consistency". $\mathcal{G}_{B\to A}(\mathcal{G}_{A\to B}(X_A)) == X_A$ Which solves the mode collapse problem.

Initial Results of CycleGAN

Initial Results of CycleGAN

- CycleGAN solves the mode collapse problem.
- Overall it is good. But it cannot create a smooth edge.

Keeping smoothness is kind-of "long-range" feature that the CNN-based generator in CycleGAN cannot reconstruct.

Vision Transforme

Image source: "<u>An Image is Worth 16x16 Words: Transformers for Image Recognition at</u> <u>Scale</u>" Alexey Dosovitskiy, Lucas Beyer, et. al., ICLR2021

We can use the transformer

architecture to capture such

<u>Unet-ViT-CycleGAN (UVCGAN)</u>

Adding a ViT block at the bottleneck of the Unet improves long-range pattern learning.

UVCGAN fixes rough edges

Figure: Default CycleGAN Generator

Figure: New UNet-ViT Generator

Results

We have compared our model (UVCGAN) vs advanced models:

- 1. ACL-GAN arXiv:2003.04858
- 2. Council-GAN arXiv:1911.10538
- 3. U-GAT-IT arXiv:1907.10830

	"A"	to "B"	"B"	to "A"
algorithm	ℓ_1	ℓ_2	ℓ_1	ℓ_2
ACL-GAN	0.083	0.566	0.039	0.121
CycleGAN	0.074	0.180	0.061	0.159
U-GAT-IT	0.078	1.187	0.073	1.161
UVCGAN	0.030	0.033	0.025	0.027

Paper submitted, should be available on arxiv soon. (available upon email request.)

Data released on https://zenodo.org/record/7809108#.ZDV0B-zMKvB

Testing UVCGAN on open data sets

Selfie⇔Anime

- Domain A: Selfie, Domain B: Anime
- 3.4k training images, 100 test images
- Download <u>here</u>
- More information of the dataset can be found <u>here</u>.

anime to selfie

male to female

female to male

• Derived from the CelebA ACL-GAN dataset

- Domain A: male, Council-GAN
 Domain B: female
- Train: male 68k, female 95k

Male⇔Female

- Test: male 16k, female 24k
- Download <u>here</u>

male t

Remove and Add Eyeglasses

Input

- Derived from the CelebA ACL-GAN dataset
- Domain A: with glasses, Council-GAN Domain B: without glasses
- Train: with 10k, without 151k
- Test: with 2.6k, without 37k
- Download here

remove eyeglasses

add eyeglasses

Quantitative Results

- Frechet Inception Distance (FID)
- Kernel Inception Distance (KID)
- Code can be found here
 <u>https://github.com/LS4GAN/uvcgan</u>
- Paper published in WACV2023, draft can be found here

https://arxiv.org/abs/2203.02557

D. Torbunov et al., "UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation," 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 702-712, doi: 10.1109/WACV56688.2023.00077.

Table 2. FID and KID scores. Lower is better.					
	Selfie to Anime		Anime to Selfie		
	FID	KID (×100)	FID	KID (×100)	
ACL-GAN	99.3	3.22 ± 0.26	128.6	3.49 ± 0.33	
Council-GAN	<u>91.9</u>	2.74 ± 0.26	126.0	2.57 ± 0.32	
CycleGAN	92.1	$\underline{2.72\pm0.29}$	127.5	2.52 ± 0.34	
U-GAT-IT	95.8	2.74 ± 0.31	108.8	1.48 ± 0.34	
UVCGAN	79.0	1.35 ± 0.20	122.8	$\underline{2.33\pm0.38}$	
	Male to Female		Female to Male		
	FID	KID (×100)	FID	KID (×100)	
ACL-GAN	9.4	0.58 ± 0.06	19.1	1.38 ± 0.09	
Council-GAN	10.4	0.74 ± 0.08	24.1	1.79 ± 0.10	
CycleGAN	15.2	1.29 ± 0.11	22.2	1.74 ± 0.11	
U-GAT-IT	24.1	2.20 ± 0.12	15.5	$\underline{0.94\pm0.07}$	
UVCGAN	<u>9.6</u>	$\underline{0.68\pm0.07}$	13.9	0.91 ± 0.08	
	Remove Glasses		Add Glasses		
	FID	KID (×100)	FID	KID (×100)	
ACL-GAN	<u>16.7</u>	$\underline{0.70\pm0.06}$	20.1	1.35 ± 0.14	
Council-GAN	37.2	3.67 ± 0.22	19.5	1.33 ± 0.13	
CycleGAN	24.2	1.87 ± 0.17	19.8	1.36 ± 0.12	
U-GAT-IT	23.3	1.69 ± 0.14	<u>19.0</u>	$\underline{1.08\pm0.10}$	
UVCGAN	14.4	0.68 ± 0.10	13.6	0.60 ± 0.08	

26

UVCGAN-v2

- Improved UVCGAN with "style" modulation and batch head.
- Compete against the SOTA diffusion-based model, EGSDE. arXiv:2207.06635
- Validated on high quality data sets: CelebA-HQ and AFHQ.

UVCGAN-v2

- Paper submitted and pre-print is available https://arxiv.org/abs/2303.16280
- Source code will be released soon. <u>https://github.com/LS4GAN/uvcgan2</u> (currently under internal testing.)

Table 2. FID, PSNR, and SSIM scores.				
	M	ale to Fem	ale	
	FID↓	PSNR ↑	SSIM ↑	
CUT	46.61	19.87	0.74	
ILVR	46.12	18.59	0.510	
SDEdit	49.43	20.03	0.572	
EGSDE	41.93	20.35	0.574	
EGSDE [†]	30.61	18.32	0.510	
UVCGANv2	<u>17.65</u>	19.44	0.681	
UVCGANv2-C	17.34	21.18	0.738	
	Cat to Dog			
	FID↓	PSNR↑	SSIM↑	
CUT	76.21	17.48	<u>0.601</u>	
ILVR	74.37	17.77	0.363	
SDEdit	74.17	19.19	0.423	
EGSDE	65.82	19.31	0.415	
EGSDE [†]	51.04	17.17	0.361	
UVCGANv2	44.76	15.55	0.562	
UVCGANv2-C	52.48	18.30	0.638	
	Wild to Dog			
	FID↓	PSNR ↑	SSIM ↑	
CUT	92.94	17.2	0.592	
ILVR	75.33	16.85	0.287	
SDEdit	68.51	17.98	0.343	
EGSDE	59.75	18.14	0.343	
EGSDE [†]	<u>50.43</u>	16.40	0.300	
UVCGANv2	45.56	15.59	0.551	
UVCGANv2-C	55.61	18.65	0.631	

Our Team

Dmitrii Turbunov

Yi Huang

Acknowledgement:

The LDRD Program at Brookhaven National Laboratory, sponsored by DOE's Office of Science under Contract DE-SC0012704, supported this work.

Haiwang Yu

Jin Huang

Shinjae Yoo

Meifeng Lin

Brett Viren

Yihui Ren

(yren@bnl.gov)

,

We are hiring!

https://jobs.bnl.gov/job/upton/postdoctoral-researcher-machine-learning-in-nuclear-physics/3437/46267319136

Apply Now

Postdoctoral Researcher - Machine Learning in Nuclear Physics

Job ID: 3679 Date posted: 03/20/2023

EMPTY

Comparing with other models

We have compared our model (UVCGAN) vs advanced models:

- 1. ACL-GAN arXiv:2003.04858
- 2. Council-GAN arXiv:1911.10538
- 3. U-GAT-IT arXiv:1907.10830

Algorithm	Time (hrs)	Jointly Trained	# Para.
ACL-GAN	~ 86		$\sim 55 { m M}$
Council-GAN	~ 600		$\sim 116 {\rm M}$
CycleGAN	~ 40	\checkmark	$\sim 28 { m M}$
U-GAT-IT	~ 140	\checkmark	$\sim 671 { m M}$
UVCGAN	~ 60	\checkmark	$\sim 68 \mathrm{M}$