Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD

Jing Wang (MIT→CERN)

10th Workshop of the APS Topical Group on Hadronic Physics April 13, 2023

I gratefully acknowledge financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.

Being Hot Matters

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Quark-Gluon Plasma

Color Superconductor

Net Baryon Number Density

Relativistic Heavy Ion Collisions

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Cool down while expansion

Hadronization

Understand Quark Gluon Plasma

re collisions (two pancakes of nucleons)

Collisions (the harder, the earlier)

1.54 C

1

QGP emergence (tons of soft scatterings)

Next - can we see microscopic structure?

S. Yoon and Wit Busza

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Cool down while expansion

Hadroni

Hard Probes

Hard (large Q) \rightarrow High p_T energetic particles

- Q ~ 1/τ
 - Produced early \rightarrow Unique process, high T
- $Q \gg \Lambda_{QCD}$
 - Initial production with pQCD
- $Q \gg T_{QGP}$
 - Seldom produced in QGP
- With color charge
 - Interact with QGP

How to probe different length scale structures?

Special Hard Probe: Heavy Flavors

Large mass $m_{HQ} \rightarrow Unique$ slow HP

- m_{HQ} ~ 1/τ
 - Produced early
- $m_{HQ} \gg \Lambda_{QCD}$
 - Initial production with pQCD even at low pT
 - Different length scale structure by varying pT
- $m_{HQ} \gg T_{QGP}$
 - Seldom produced in QGP \rightarrow Keep identity
 - Brownian motion \rightarrow Diffusion coefficient D_s
- $m_{HQ} \gg m_q$
 - Interact with QGP differently from light quark

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Heavy quark diffusion in QGP

Modification of Particle Spectra

Nuclear modification factor RAA

R_{AA} =1: superposition of nucleon-nucleon collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{T_{AA}\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \leftarrow \mathrm{Heavy-ion}$$

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Suppression of Charm Meson D⁰

- $D^0 R_{AA} < 1$ in wide kinematics
 - Lose energy in QGP via collisions (low pT) and radiations (high p_T)
 - Unique info from low pT

Suppression of Charm Meson D⁰

- Similar D⁰ R_{AA} in LHC & RHIC in overlap region?
 - Despite different temperature & size

Flavor Dependence of Energy Loss

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Dead cone effect
 - Radiation is suppressed inside $\theta < m/E$
 - Energy loss $\Delta E_{l} > \Delta E_{c} > \Delta E_{b}$

<u>EPJC 78 (2018) 509</u> EPJC 78 (2018) 762

Flavor Dependence of RAA

 $b \rightarrow e / c \rightarrow e R_{AA}$ in AuAu

 Interplay of energy loss, shadowing, flow, coalescence, spectrum shape, nPDF Model suggests difference at intermediate p_T results from energy loss Test transport models over all flavors and collision systems simultaneously

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Initial Spatial Anisotropy of Medium

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Azimuthal anisotropic Initial shape in peripheral* events *Peripheral: relatively large impact parameter

Animation

Collective Flow

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Science 298 (2002) 2179

Collective Flow

Existence of QGP -> Final-state particle azimuthal anisotropy

 $\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2$ n=1→ Elliptic $V_2 \neq 0$

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

$$v_n \cos\left[n\left(\phi - \Psi_n\right)\right]$$

Pressure driven expansion

Science 298 (2002) 2179

Charm Flow Signal in PbPb

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss

Shorter

Charm Flow Signal: LHC vs. RHIC

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Decisive precision at sPHENIX

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

J/ ψ Flow Signal at LHC

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
 - All flavors tend to converge
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?

J/ψ Flow Signal at RHIC?

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
 - All flavors tend to converge
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Hint of zero v_2 of J/ψ at RHIC \rightarrow recombination mainly contributes to v₂?

JHEP 10 (2020) 141 CMS-PAS-HIN-21-008

Beauty Flow Signal

- Heavy flavor flow signal well-established
 - Flavor hierarchy at low pT
 - Magnitude reflects thermalization degree
- Non-zero v_2 up to high $p_T \sim 40$ GeV
 - Path-length dependence of energy loss
 - All flavors tend to converge
- LHC vs. RHIC
 - Similar D $v_2 \rightarrow$ despite different T & size?
 - Hint of zero v_2 of J/ψ at RHIC \rightarrow recombination mainly contributes to v₂?
 - Eager for high precision beauty v₂ at RHIC
- PLB 807 (2020) 135595 CMS-PAS-HIN-21-008

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Diffusion & Medium Response

Angular profile of D wrt jet axis

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Directly see diffusion via the angle between D mesons and jet axis
Hint of D⁰ farther from jet axis in PbPb than pp

Charm diffusion

Medium response

Heavy Quark Probe QGP Transport Property

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Diffusion coefficient D_s directly related with QGP properties, e.g. viscosity
- D_s extracted from data with phenomenological model
 - Compare to first principle calculation
- Data agrees with strong coupling
 - Sensitive to long-range force and non-perturbative structure of QGP

Extracted from data

Strong coupling

(two pancakes of nucleons)

the harder, the earliers

How are hadrons produced from heavy quarks with medium existence?

Major uncertainty in phenomenological models

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

In-Medium Hadronization

ence I tons of soft scatterings)

Cool down while expansion

Hadronization

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

In-Medium Hadronization

QGP modifies hadronization

 Recombination in addition to fragmentation

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

In-Medium Hadronization

Hadronization: Strange- & Charm-Meson

127 (2021) <u>092301</u>

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

arXiv:2302,11511 128 (2022) 252301

PLB 829 (2022) 137062

Hadronization: Λ_c Production

- Enhanced Λ_c/D^0 ratio in AA collisions → Hint of recombination
 - Only at intermediate pT
 - Stronger in central events
 - Effect of rapidity under study

arXiv:2112.08156 arXiv:2210.06939 CMS-PAS-HIN-21-004

Hadronization New Frontier: X(3872)

 $X(3872)/\psi(2S)$ vs. collision system size

- Broken up by interactions with comovers
 - Stronger in high-multiplicity environment
- Production via recombination

Tightly bound, small radius

- Stronger than baryons more quark content
- Both effects depend on inner structure ullet
 - Potential discrimination in heavy-ion collisions

20-year debate of X(3872) nature

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Charmonium Production: Sequential Melting

Charmonium Production: Recombination

 $QQ \rightarrow$ Bound states of quark and its anti-quark

Sequential melting \rightarrow binding energy hierarchy

- Thermometer of QGP
- Stronger suppression in central events \rightarrow higher T

Recombination

• Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$

Charmonium Production: Recombination

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

 $QQ \rightarrow$ Bound states of quark and its anti-quark

Sequential melting \rightarrow binding energy hierarchy

- Thermometer of QGP
- Stronger suppression in central events \rightarrow higher T

Recombination

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Significant in LHC not RHIC \rightarrow larger $\sigma_{c\bar{c}}$

Charmonium Production: Cold Nuclear Matter Effects

 $Q\bar{Q} \rightarrow Bound$ states of quark and its anti-quark

• Sequential melting \rightarrow binding energy hierarchy

- Thermometer of QGP
- Stronger suppression in central events \rightarrow higher T

Recombination

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Significant in LHC not RHIC \rightarrow larger $\sigma_{c\bar{c}}$

Cold nuclear matter effects

- Nuclear/comover absorption
 - Destroyed by interactions with nucleus remnants
- Nuclear PDF

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Bottomium Production: Sequential Melting

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Sequential suppression for Y(nS)
 - Y(1S) > Y(2S) > Y(3S)
 - Much weaker recombination for beauty

<u>PLB 822 (2021) 136579</u> <u>arXiv:2205.03042</u> <u>arXiv:2303.17026</u>

Bottomium Production: LHC vs. RHIC

- Sequential suppression for Y(nS)
 - Y(1S) > Y(2S) > Y(3S)
 - Much weaker recombination for beauty
 - Why similar Y(1S) RAA in LHC & RHIC?
 - High precision at sPHENIX

130 (2023) 112301 arXiv:2303.17026

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

First observation of Y(3S) in AA

Sequential suppression for Y(nS)

- Y(1S) > Y(2S) > Y(3S)
- Much weaker recombination for beauty
- Why similar Y(1S) RAA in LHC & RHIC?
- High precision at sPHENIX
- Y(3S) first observed in AA collisions
 - Crucial to constrain feed-down contribution
 - Particle ratio cancels nPDF effect
 - Challenging for theoretical models

Initial State

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Cool down while e

How is energy distributed before expansion? Important input to models

Directed Flow v₁: Tilt of Medium

• Tilt \rightarrow Longitudinal structure of initial energy density distribution ➡ Non-zero (rapidity-dependent) v₁

Vi

Directed Flow v₁: Strong EM Field

• Tilt \rightarrow Longitudinal structure of initial energy density distribution ➡ Non-zero (rapidity-dependent) v₁

ZEP

• Strong EM field emerges at early stage • Decays quickly \rightarrow unique chance for heavy flavors \Rightarrow Split v₁ of c and $\bar{c} \rightarrow$ non-zero (rapidity-dep) Δv_1

Difference b/w LHC and RHIC for Δv_1 Possibly different effect dominates

J/ ψ Polarization: Initial B Field & Rotation

- $\lambda_{\theta} > 0 \rightarrow$ Transverse polarization in the direction perpendicular to the reaction plane → connected with
 - Strong magnetic field
 - Rotation at early stage via spin-orbit coupling

Initial Geometry Fluctuations

• Study event-by-event initial shape fluctuation via higher-order v_n and multi-particle correlation

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Summary: Being Hot Matters

Many interesting heavy flavor behaviors driven by existence of QGP

Energy loss

Collective flow

Directed flow

Summary: Being Hot Really Matters?

Most of them also observed in small systems

Energy loss

QQ Polarization

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Challenge & opportunity -> Stress collision system scan of $EIC \rightarrow RHIC \rightarrow LHC$ to understand the onset of QGP

Heavy-ion collisions

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

I Asked AI to Imagine...

Heavy-ion collisions

A long way to go to understand quarks and gluons

I Asked AI to Imagine...

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Isabelle

Thanks for your attention!

it you

MITHIG group's work was supported by US DOE-NP

Charmonium Production: Summary

 $QQ \rightarrow$ Bound states of quark and its anti-quark

Sequential melting (binding energy hierarchy)

- Thermometer of QGP
- Stronger suppression in central events \rightarrow higher T
- Smaller R_{AA} in LHC than RHIC at high $p_T \rightarrow$ higher T

Recombination

ullet

- Enhancement at low p_T in central events \rightarrow larger $\sigma_{c\bar{c}}$
- Significant in LHC not RHIC \rightarrow larger $\sigma_{c\bar{c}}$
- Cold nuclear matter effects
 - Nuclear/comover absorption
 - Destroyed by interactions with nucleus remnants
 - Nuclear PDF

Heavy Quark Hadronization: Baryons

• High precision Λ_c/D^0 expected from CMS, sPHENIX and EIC with different environments

sPHENIX Projection

HF Probe QGP Transport Property

- Small specific shear viscosity η/s
 - Consistent from soft probe and heavy flavors
 - Heavy quarks produced earlier than soft probes -> unique at higher temperature
- Hadronization is critical to suppress uncertainty

New Window to X(3872) Structure

➡ Reflect the nature of X(3872)

Small radius

Lower dissociation probability

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Breakup by comoving particles
 → Suppress X(3872)

Higher dissociation probability

New Window to X(3872) Structure

Tightly bound Small radius

Coalescence probability depends on X(3872) inner structure and particle distribution

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

 Breakup by comoving particles

 Suppress X(3872)
 Coalescence with diffusing particles → Enhance X(3872)

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

Quarkonium Binding Energy

Tetra-quark or Molecule: Theory

Jing Wang (MIT), Heavy flavor, Quarkonia and Exotic hadrons in Hot QCD, GHP Workshop

- Many theoretical efforts!
- **Divergence** in theoretical calculations
- **Different recombination** and dissociation implementation