The effects of pre-hydrodynamic flow in heavy-ion collisions at the RHIC Beam Energy Scan program

1.

Mashhood Munir, Chun Shen Wayne State University

What are heavy ion collisions and how are they simulated?

Heavy ion collisions create extreme conditions...

Very **quick** (10⁻²³–10⁻²⁴ seconds) Very **hot** (~2 trillion K)

...and produce rapid exploding matter evolving through multiple stages:

- 1. **Pre-equilibrium stage** (not extensively studied in 3+1D)
- 2. **Quark-gluon plasma** creation (hydrodynamics)
- 3. **Decoupling** (Cooper-Frye freeze-out, hadronic cascade)

How can the pre-equilibrium stage affect observables?

- 1. Pre-equilibrium stage evolves system's energy-momentum tensor (~1 fm/c)
- 2. Drives system towards equilibrium, connects into hydrodynamics
- 3. Affects development of QGP flow (anisotropic flow)
 - a. Specifically the **anisotropic flow coefficients**

$$\frac{dN}{d\phi} = \frac{N}{2\pi} (1 + 2\sum_{n=1}^{\infty} \boldsymbol{v_n} \cos(\phi - \boldsymbol{\Psi_n}))$$

- Compare simulated anisotropic flow coefficients with experimental measurements to constrain pre-equilibrium stage
- Requires parameterization of pre-equilibrium stage

Modeling the pre-equilibrium stage with free-streaming Pre-equilibrium dynamics evolve energy-momentum tensor T^{µν} in spacetime.

• Free-streaming evolves $T^{\mu\nu}$ as follows:

$$T^{\mu\nu}(\tau, \boldsymbol{x}_{\perp}, \eta_s) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi_p \hat{\boldsymbol{p}}^{\mu} \hat{\boldsymbol{p}}^{\nu} T^{\tau\tau}(\tau_0, \boldsymbol{x}_{\perp} - (\tau_s - \tau_0) \hat{\boldsymbol{p}}, \eta_s)$$

Parameterization of the pre-equilibrium stage with flow velocity We parameterize the free-streaming flow velocity as $u(r_{,}) = tanh(\alpha r_{,})$.

- The flow factor α is large if the hot spot width σ is small
- The flow factor α increases with the free-streaming time τ_s

Effects of varying pre-equilibrium flow: anisotropic flow

- Compute charge hadron v_2 , v_3 with varying α
 - v₂ elliptic flow, v₃ triangular
 flow
- Increase in v₃/v₂ towards higher centrality for larger *α*
- Stronger initial flow correlates with larger v₃/v₂ ratio
- Agreement with experimental implies weakly coupled early stage

Effects of varying pre-equilibrium flow: anisotropic flow

- Compute charge hadron v₂, v₃ with varying α
 - v₂ elliptic flow, v₃ triangular
 flow
- Increase in v_3/v_2 towards higher centrality for larger α
- Stronger initial flow correlates with larger v₃/v₂ ratio
 - Not true at higher energies!

Effects of varying pre-equilibrium flow: transverse momenta

- Pre-equilibrium flow increases transverse momenta towards higher centrality
- Predicts no pre-equilibrium
 flow (α = 0) at lower energies

Effects of varying pre-equilibrium flow: transverse momenta

- Pre-equilibrium flow increases transverse momenta towards higher centrality
- Predicts no pre-equilibrium
 flow (α = 0) at lower energies
- Predicts higher
 pre-equilibrium flow at higher
 energies
 - Parameterization meaningful in both cases

Conclusions

- We provide a generic parameterization of the transverse velocity field at pre-equilibrium stage of heavy ion collisions
- Full hybrid simulations showed how adjusting the strength of pre-equilibrium flow affects observables

In the future...

- Investigate other observables potentially affected pre-equilibrium flow
 - Further constrain pre-equilibrium flow
- Interpret the phenomenological constraints on α with microscopic models
 - How strongly coupled is the pre-equilibrium stage?