Phenomenology of proton and deuteron deeply virtual exclusive scattering **APS GHP Meeting**

Joshua Bautista, Brandon Kriesten, Simonetta Liuti **April 12, 2023**

Proton spin

Naive parton model does not explain total proton spin

Orbital dynamics encoded in Generalized Parton Distributions (GPDs)

Significant contribution to proton spin comes from orbital dynamics

Generalized Parton Distributions

Parton orbital angular momentum as quantum correlation functions

$$F_{\Lambda,\Lambda'}^{[\Gamma]}(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle p',\Lambda' \left| \bar{\psi} \left(-\frac{z}{2} \right) \Gamma \mathcal{W} \left(-\frac{z}{2},\frac{z}{2} \mid n \right) \psi \left(\frac{z}{2} \right) \right| p,\Lambda \right\rangle \right|_{z=z_{T}=0}$$

A. Rajan, M. Engelhardt, S. Liuti PRD 98 (2018)

X. Ji **PRL. 78 (1997)** A. Radyushkin **PRD. 56 (1997)** D. Muller, et. al. **(1994)** M. Diehl **Phys. Rep. (2003)**

$$t = (p' - p)^2$$

$$\xi = \frac{(p' - p)^+}{(p' + p)^+}$$

Generalized Parton Distributions

Impact parameter distribution function A.K.A one body density distribution in the transverse plane.

M. Burkardt Int. J. Mod. Phys. A (2003) B. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti PRD 105 (2022)

X. Ji **PRD 55 (1997)** B. Kriesten, S. Liuti, et. al. **PRD 101 (2020)**

DVCS Phenomenolo

$$\begin{aligned} \frac{d^{5}\sigma_{DVCS}}{dx_{Bj}dQ^{2}d|t|d\phi d\phi_{S}} &= \Gamma |T_{DVCS}|^{2} \\ &= \frac{\Gamma}{Q^{2}(1-\epsilon)} \left\{ F_{UU\underline{T}} + \epsilon F_{UU,\underline{L}} + \epsilon \cos 2\phi F_{UU}^{\cos 2\phi} + \sqrt{\epsilon(\epsilon+1)}\cos\phi F_{UU}^{\cos\phi} + (2h)\sqrt{2\epsilon(1-\epsilon)}\sin\phi F_{LU}^{\sin\phi} \\ &+ (2h)\sqrt{2\epsilon(1-\epsilon)}\sin\phi F_{UL}^{\sin\phi} + \epsilon \sin 2\phi F_{UL}^{\sin 2\phi} \\ &+ (2h)\left(\sqrt{1-\epsilon^{2}}F_{LL} + 2\sqrt{\epsilon(1-\epsilon)}\cos\phi F_{LL}^{\cos\phi}\right)\right) \\ &+ (2\Lambda_{T})\left[\sin(\phi-\phi_{S})\left(F_{UT,T}^{\sin(\phi-\phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi-\phi_{S})}\right) \\ &+ \epsilon \sin(\phi+\phi_{S})F_{UT}^{\sin(\phi+\phi_{S})} + \epsilon \sin(3\phi-\phi_{S})F_{UT}^{\sin(3\phi-\phi_{S})} \\ &+ \sqrt{2\epsilon(1+\epsilon)}\left(\sin\phi_{S}F_{UT}^{\sin\phi_{S}} + \sin(2\phi-\phi_{S})F_{UT}^{\sin(2\phi-\phi_{S})}\right) \\ &+ (2h)(2\Lambda_{T})\left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S})F_{LT}^{\cos(\phi-\phi_{S})} + \sqrt{2\epsilon(1-\epsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}} \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_{S})F_{LT}^{\cos(2\phi-\phi_{S})}\right] \right\} \end{aligned}$$

B. Kriesten, S. Liuti, et. al. PRD 101 (2020)

$$\mathbf{gy}$$

$$\varepsilon_{\mu}^{\Lambda_{\gamma}^{*}}(hadron) = e^{-i\Lambda_{\gamma}^{*}\phi}\varepsilon_{\mu}^{\Lambda_{\gamma}^{*}}(lepton)$$

BH-DVCS interference term

 $\frac{d^{5}\sigma_{\mathcal{I}}}{dx_{Bj}dQ^{2}d|t|d\phi d\phi_{S}} = e_{l}\frac{\Gamma}{Q^{2}|t|}\left\{F_{UU}^{\mathcal{I}} + (2h)F_{LU}^{\mathcal{I}} + (2\Lambda)F_{UL}^{\mathcal{I}} + (2h)(2\Lambda)F_{LL}^{\mathcal{I}} + (2\Lambda_{T})F_{UT}^{\mathcal{I}} + (2h)(2\Lambda_{T})F_{LT}^{\mathcal{I}}\right\}$

$$F_{UU}^{\mathcal{I},tw3} = \Re e \left\{ \underline{A}_{UU}^{(3)\mathcal{I}} \left[F_1 \left(2\widetilde{\mathcal{H}}_{2T} + \mathcal{E}_{2T} \right) + F_2 \left(\mathcal{H}_{2T} + \tau \widetilde{\mathcal{H}}_{2T} \right) \right] \\ + \underline{B}_{UU}^{(3)\mathcal{I}} G_M \widetilde{E}_{2T} + \underline{C}_{UU}^{(3)\mathcal{I}} G_M \left[2\xi H_{2T} - \tau \left(\widetilde{E}_{2T} - \xi E_{2T} \right) \right] \right\}$$

B. Kriesten, S. Liuti, et. al. **PRD 101 (2020)**

 $F_{UU}^{\mathcal{I},tw2} = A_{UU}^{\mathcal{I}} \Re e \left(F_1 \mathcal{H} + \tau F_2 \mathcal{E} \right) + B_{UU}^{\mathcal{I}} G_M \Re e \left(\mathcal{H} + \mathcal{E} \right) + C_{UU}^{\mathcal{I}} G_M \Re e \widetilde{\mathcal{H}} \quad \text{Proportional to } \cos\phi$

Not proportional to $\cos\phi$

Formalism comparison on phase structure

B. Kriesten, S. Liuti, et. al. **PRD 101 (2020)** A. V. Belitsky, D. Muller, A. Kirchner Nuclear Physics B 629 (2002) A. V. Belitsky, D. Muller **PRD 82 (2010)**

To recapitulate...

- Proper understanding of phase leads to better separation of twist-2 and twist-3 terms and target mass corrections.
- Different formalisms disagree on phase structure.
- Is there a way to distinguish using data?

Strip non-essential elements

BH

Pointlike proton

Virtual photon propagator

$$T_{DVCS} = \underbrace{\frac{e^3}{q^2}\bar{u}(k',h')\gamma^{\mu}u(k,h)}_{q_{\mu\nu}} \int u(p',\Lambda') \left(\frac{\gamma^{\alpha}(\not p + \not q + M)\gamma^{\nu}}{(p+q)^2 - M^2} + \frac{\gamma^{\nu}(\not p - \not q' + M)\gamma^{\alpha}}{(p-q')^2 - M^2}\right) u(p,\Lambda)\varepsilon_{\alpha}^{*\Lambda_{\gamma'}}(q')$$

$$-g_{\mu\nu} = \sum_{\Lambda_{\gamma^*} = \pm 1,0} (-1)^{\Lambda_{\gamma^*} + 1} \varepsilon_{\mu}^{*\Lambda_{\gamma^*}}(q) \varepsilon_{\nu}^{\Lambda_{\gamma^*}}(q)$$

$$T_{DVCS,\Lambda\Lambda'}^{h\Lambda'_{\gamma}} = \sum_{\Lambda_{\gamma^*}} (-1)^{\Lambda_{\gamma^*} + 1} A_h^{\Lambda_{\gamma^*}}(k,k',q) f_{\Lambda\Lambda'}^{\Lambda_{\gamma^*}\Lambda'_{\gamma}}(q,p,q',p')$$

$$\frac{k,h}{p,\Lambda} \qquad \frac{k',h'}{p,\Lambda} \qquad \frac{k,h}{p',\Lambda'} \qquad \frac{k,h}{p',\Lambda'} \qquad \frac{k',h'}{p,\Lambda} \qquad \frac{k',h'}{p',\Lambda'} \qquad \frac{k$$

DVCS Helicity structure *k*′, *h k*, *h* q, Λ_{γ^*}

 $A_{h}^{\Lambda_{\gamma^{*}}}\left(k,k',q\right)$

More interested in this piece

Setting up the kinematics

Virtual photon along z-axis means

$$\varepsilon_{\nu}^{\Lambda_{\gamma^*}=\pm 1}(q) = \frac{1}{\sqrt{2}}(0,\pm 1,-i,0)$$

$$\varepsilon_{\nu}^{\Lambda_{\gamma^*}=0}(q) = \frac{1}{Q}\left(\sqrt{\nu^2 + Q^2},0,0,\nu\right)$$
Easier to separate out leading twist contributions
Lepton plane (x,y,z) and Hadron plane (x',y',z') is rotated with respect to it

$$\varepsilon_{\mu}^{\Lambda_{\gamma}^{*}}(hadron) = e^{-i\Lambda_{\gamma}^{*}\phi} \varepsilon_{\mu}^{\Lambda_{\gamma}^{*}}(lepton)$$

Why we put in the phase?

We are doing the calculation in two different planes. The rotation must be accounted for by the extra phase factor.

ise? k, h q, Λ_{γ^*} $\varepsilon^{\pm}(lepton) = \frac{1}{\sqrt{2}}(\pm \hat{x} - i\hat{y})$

Phase difference is a signature of quantum interference

• For high energy QED Bremsstrahlung processes (e.g., $e^+e^- \rightarrow \gamma\gamma\gamma$ or $e^+e^- \rightarrow \mu^+\mu^-\gamma$), it is convenient to define two different planes for outgoing real photons, which leads to a phase difference.

P. De Causmaecker, R. Gastmans, W. Troost, Tai Tsun Wu Nuclear Physics B206 (1982)

• In SIDIS, you also see a phase difference due to quantum interference, but this is governed by QCD.

S. Brodsky, D. Hwang, I. Schmidt Phys. Lett. B 530 (2002) D. Sivers **PRD 41 (1990)**

Quantum interference and ϕ dependence

$$\begin{split} \sigma_{h\Lambda} &= \sum_{\Lambda'_{\gamma},\Lambda'} \sum_{\Lambda_{\gamma''}} \left[A_{h}^{\Lambda_{\gamma''}} f_{\Lambda,\Lambda'}^{\Lambda_{\gamma''}} \right]^{*} \sum_{\Lambda_{\gamma'}} A_{h}^{\Lambda_{\gamma''}} f_{\Lambda,\Lambda'}^{\Lambda_{\gamma''}} f_{\Lambda,\Lambda'}^{\Lambda_{\gamma''}} \\ &= \sum_{\Lambda'_{\gamma},\Lambda'} \left(A_{h}^{1} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} + A_{h}^{-1} f_{\Lambda,\Lambda'}^{-1,\Lambda_{\gamma}'} + A_{h}^{0} f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right)^{*} \left(A_{h}^{1} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} + A_{h}^{0} f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right) \\ &= \sum_{\Lambda_{\gamma},\Lambda'} \left(A_{h}^{1} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} + A_{h}^{-1} f_{\Lambda,\Lambda'}^{-1,\Lambda_{\gamma}'} + A_{h}^{0} f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right)^{*} \left(A_{h}^{1} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} + A_{h}^{0} f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right) \\ &= \sum_{\Lambda_{\gamma},\Lambda'} \left(A_{h}^{1} \right)^{2} \left| f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} \right|^{2} + \left(A_{h}^{-1} \right)^{2} \left| f_{\Lambda,\Lambda'}^{-1,\Lambda_{\gamma}'} \right|^{2} + \left(A_{h}^{0} \right)^{2} \left| f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right|^{2} \\ &+ A_{h}^{1} A_{h}^{0} \left[\left(f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} \right)^{*} f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} + \left(f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right)^{*} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} \right] + A_{h}^{-1} A_{h}^{0} \left[\left(f_{\Lambda,\Lambda'}^{-1,\Lambda_{\gamma}'} + \left(f_{\Lambda,\Lambda'}^{0,\Lambda_{\gamma}'} \right)^{*} f_{\Lambda,\Lambda'}^{1,\Lambda_{\gamma}'} \right] \cdot \cos(2\phi) \text{ terms} \end{split}$$

 ϕ dependence due to quantum interference between transverse and longitudinal virtual photons.

Phase in interference term

 $T_{BH}^{*}T_{DVCS} = \frac{e^{6}}{\Delta^{2}} \sum_{\Lambda_{\gamma^{*}}} (-1)^{\Lambda_{\gamma^{*}+1}} A_{h}^{\Lambda_{\gamma^{*}}} \left(k, k', q\right) \left[f_{\Lambda\Lambda'}^{\Lambda_{\gamma^{*}}\Lambda_{\gamma'}} \left(q, p, q', p'\right) \right] \left[L_{h}^{\Lambda_{\gamma'}} \left(k, k', q, q'\right) \right]^{\lambda} \left[J_{\Lambda\Lambda'} \left(p, p'\right) \right]_{\lambda}^{\kappa}$

Unpolarized interference term proportional to $\cos(\phi)$ (Kriesten et al. 2020)

 $\propto e^{-i\Lambda_{\gamma}*\phi}$

Interference term in pointlike case

Pointlike case has $sin(\phi)$ term...

Conjecture: $sin(\phi)$ terms proportional to masses.

Summary and Outlook

- A good understanding of the phase structure of the cross section is crucial for separating out twist-2 and twist-3 contributions and target mass corrections.
- To hone-in on the phase structure, we calculated the cross section as if the proton was a pointlike particle.
- This extends to deeply virtual exclusive processes for the deuteron or any other targets.
- **Beyond phase structure**
 - This sort of calculation is useful to relate and translate between different formalisms.
 - This can also be useful to study the phase structure of parity violating pieces in Bethe-Heitler, which can be a possible avenue for independent measurement of the W mass.

