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What do we know about structures?

• Most well-known structure is through longitudinal structure of 
hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. D 104, 074031 (2021)
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Other structures?

• To give deeper insights into color confined 
systems, we shouldn’t limit ourselves to 
proton structures
• Pions are also important because of their 

Goldstone-boson nature while also being 
made up of quarks and gluons
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Pion PDFs in JAM
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3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs
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Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• We can learn about the coordinate space correlations of quark fields 

in hadrons
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
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Factorization for low-𝑞! Drell-Yan

• Like collinear observable, a hard part with two functions that describe 
structure of beam and target
• So called “𝑊”-term, valid only at low-𝑞"
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TMD PDF within the  𝑏∗ prescription

barryp@jlab.org 10

Low-𝑏!: perturbative
high-𝑏!: non-perturbative

Relates the TMD at 
small-𝑏! to the collinear
PDF
⇒ TMD is sensitive to 
collinear PDFs

𝑔"/𝒩(&): intrinsic non-perturbative structure of 
the TMD
𝑔(: universal non-perturbative Collins-Soper 
kernel

Controls the perturbative 
evolution of the TMD



A few details

• Nuclear TMD model linear combination of bound protons and 
neutrons
• Include an additional 𝐴-dependent nuclear parameter

• We use the MAP collaboration’s parametrization for non-perturbative 
TMDs
• Only tested parametrization flexible enough to capture features of 𝑄 bins

• Perform a simultaneous global analysis of pion TMD and collinear 
PDFs, with proton (nuclear) TMDs
• Include both 𝑞!-dependent and collinear pion data and fixed-target 𝑝𝐴 data
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Data and theory agreement

• Fit both 𝑝𝐴 and 𝜋𝐴 DY data and achieve good agreement to both
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Extracted pion PDFs

• The small-𝑞! data do not constrain much the PDFs
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Resulting TMD PDFs 
of proton and pion

• Broadening appearing 
as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Resulting average 𝑏!

• Average transverse spatial 
correlation of the up quark 
in proton is ∼ 1.2 times 
bigger than that of pion
• Pion’s 𝑏! 𝑥⟩ is 5.3 − 7.5𝜎

smaller than proton in this 
range
• Decreases as 𝑥 decreases
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Possible explanation

• At large 𝑥, we are in a valence region, where only the valence quarks 
are populating the momentum dependence of the hadron

bT
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Possible explanation

• At small 𝑥, sea quarks and potential 𝑞4𝑞 bound states allowing only for 
a smaller bound system

bT
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Outlook

• Future studies needed for theoretical explanations of these 
phenomena
• Lattice QCD can in principle calculate any hadronic state – look to 

kaons, rho mesons, etc.
• Future tagged experiments such as at EIC and JLab 22 GeV can 

provide measurements for neutrons, pions, and kaons
• We should study other ways to formulate the TMD such as: Qiu-

Zhang method, the 𝜁-prescription, or the hadron structure oriented 
approach
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Backup
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Small 𝑏! operator product expansion

• At small 𝑏!, the TMDPDF can be described in terms of its OPE:

• where 6𝐶 are the Wilson coefficients, and 𝑓"/$ is the collinear PDF
• Breaks down when 𝑏! gets large

barryp@jlab.org 20



𝑏∗ prescription

• A common approach to regulating large 𝑏! behavior

• At small 𝑏!, 𝑏∗ 𝑏! = 𝑏!
• At large 𝑏! , 𝑏∗ 𝑏! = 𝑏&'(
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Must choose an appropriate value; 
a transition from perturbative to 
non-perturbative physics



Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏!, have to non-perturbatively describe large 𝑏!
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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TMD factorization in Drell-Yan 

• In small-𝑞) region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription
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Non-perturbative 
pieces

Perturbative 
pieces

Can these data constrain the 
pion collinear PDF?

Non-perturbative piece of the CS kernel



MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a 
complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barryp@jlab.org 24

Universal CS kernel



Resulting 𝜒# for each parametrization

• Tried multiple 
parametrizations 
for non-
perturbative 
TMD structures
• MAP

parametrization 
is able to 
describe better 
all the datasets
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Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton 

• Each object on the right side independently obeys the CSS equation
• Assumption that the bound proton and bound neutron follow TMD 

factorization

• Make use of isospin symmetry in that 𝑢/𝑝/𝐴 ↔ 𝑑/𝑛/𝐴, etc.
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6𝑓*/+ 𝑥, 𝑏! , 𝜇, 𝜁 =
𝑍
𝐴
6𝑓*/,/+ 𝑥, 𝑏! , 𝜇, 𝜁 +

𝐴 − 𝑍
𝐴

6𝑓*/-/+ 𝑥, 𝑏! , 𝜇, 𝜁



Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the 
flavor-dependent pieces of the TMD PDF as
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Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., 
Phys. Rev. Lett 129, 242001 (2022).

• Where 𝑎𝒩 is an additional parameter to be fit
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Datasets in the 𝑞!-dependent analysis

• Total of 383 number of points
• All fixed target, low-energy data
• We perform a cut of 𝑞!&'( < 0.25 𝑄
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Transverse EMC effect

• Compare the 
average 𝑏! given 𝑥
for the up quark in 
the bound proton to 
that of the free 
proton
• Less than 1 by          
∼ 5 − 10% over the 
𝑥 range
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