

Tomography of pions and protons via transverse momentum dependent distributions

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: <u>arXiv:2302.01192</u>

P. C. Barry acknowledges financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.

What do we know about structures?

• Most well-known structure is through longitudinal structure of hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. D 104, 074031 (2021)

barryp@ilab.org

Other structures?

- To give deeper insights into color confined systems, we shouldn't limit ourselves to proton structures
- Pions are also important because of their Goldstone-boson nature while also being made up of quarks and gluons

Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study

Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study

3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs

Unpolarized TMD PDF

$$\tilde{f}_{q/\mathcal{N}}(x,b_T) = \int \frac{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr}\left[\langle \mathcal{N} | \bar{\psi}_q(b)\gamma^+ \mathcal{W}(b,0)\psi_q(0) | \mathcal{N} \rangle\right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q/N}(x, b_T) \rightarrow \tilde{f}_{q/N}(x, b_T; \mu, \zeta)$

Factorization for low- q_T Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called "W"-term, valid only at low- q_T

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\tau\mathrm{d}Y\mathrm{d}q_T^2} = \frac{4\pi^2\alpha^2}{9\tau S^2} \sum_q H_{q\bar{q}}(Q^2,\mu) \int \mathrm{d}^2b_T \, e^{ib_T \cdot q_T} \\ \times \tilde{f}_{q/\pi}(x_\pi,b_T,\mu,Q^2) \, \tilde{f}_{\bar{q}/A}(x_A,b_T,\mu,Q^2) \,,$$

TMD PDF within the b_* prescription

$$\mathbf{b}_*(\mathbf{b}_T) \equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{ ext{max}}^2}}.$$

Low- b_T : perturbative high- b_T : non-perturbative

$$\begin{split} \tilde{f}_{q/\mathcal{N}(A)}(x, b_T, \mu_Q, Q^2) &= \underbrace{(C \otimes f)_{q/\mathcal{N}(A)}(x; b_*)}_{\mathsf{K} \in \operatorname{exp}} \underbrace{-g_{q/\mathcal{N}(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0}}_{\mathsf{K} \in \operatorname{S}(b_*, Q_0, Q, \mu_Q)} \\ &= \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\mathsf{K} \in \operatorname{S}(b_T)} \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\mathsf{K} \in \operatorname{S}(b_T)} \\ &= \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\mathsf{K} \in \operatorname{S}(b_T)} \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\mathsf{K} \in \operatorname{S}(b_T)} \\ &= \underbrace{S(b_*, Q, \mu_Q)}_{\mathsf{K} \in \operatorname{S}(b_T)} \\$$

A few details

- Nuclear TMD model linear combination of bound protons and neutrons
 - Include an additional A-dependent nuclear parameter
- We use the MAP collaboration's parametrization for non-perturbative TMDs
 - Only tested parametrization flexible enough to capture features of Q bins
- Perform a simultaneous global analysis of pion TMD and collinear PDFs, with proton (nuclear) TMDs
 - Include both q_T -dependent and collinear pion data and fixed-target pA data

Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \text{ GeV}$	χ^2/np	Z-score
q_T -integr. DY	E615 [37]	21.8	0.86	0.76
$\pi W \to \mu^+ \mu^- X$	NA10 [38]	19.1	0.54	2.27
	NA10 [38]	23.2	0.91	0.18
Leading neutron	H1 [73]	318.7	0.36	4.61
$ep \rightarrow e'nX$	ZEUS [74]	300.3	1.48	2.16
q_T -dep. pA DY	E288 [67]	19.4	0.93	0.25
$pA \rightarrow \mu^+\mu^-X$	E288 [67]	23.8	1.33	1.54
	E288 [67]	24.7	0.95	0.23
	E605 [<mark>68</mark>]	38.8	1.07	0.39
	E772 [69]	38.8	2.41	5.74
	E866 (Fe/Be) [70]	38.8	1.07	0.29
	E866 (W/Be) [70]	38.8	0.89	0.11
q_T -dep. $\pi A DY$	E615 [37]	21.8	1.61	2.58
$\pi W \to \mu^+ \mu^- X$	E537 [71]	15.3	1.11	0.57
Total			1.15	2.55

Extracted pion PDFs

• The small- q_T data do not constrain much the PDFs

Resulting average
$$b_T$$

 $\langle b_T | x \rangle_{q/N} = \int d^2 b_T b_T \tilde{f}_{q/N}(b_T | x; Q, Q^2)$

- Average transverse spatial correlation of the up quark in proton is ~ 1.2 times bigger than that of pion
- Pion's $\langle b_T | x \rangle$ is 5.3 7.5 σ smaller than proton in this range
- Decreases as x decreases

Possible explanation

• At large *x*, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system

Outlook

- Future studies needed for theoretical explanations of these phenomena
- Lattice QCD can in principle calculate any hadronic state look to kaons, rho mesons, etc.
- Future tagged experiments such as at EIC and JLab 22 GeV can provide measurements for neutrons, pions, and kaons
- We should study other ways to formulate the TMD such as: Qiu-Zhang method, the ζ -prescription, or the hadron structure oriented approach

Backup

Small b_T operator product expansion

• At small b_T , the TMDPDF can be described in terms of its OPE:

$$\tilde{f}_{f/h}(x,b_T;\mu,\zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{f/j}(x/\xi,b_T;\zeta_F,\mu) f_{j/h}(\xi;\mu) + \mathcal{O}((\Lambda_{\rm QCD}b_T)^a)$$

- where \tilde{C} are the Wilson coefficients, and $f_{j/h}$ is the collinear PDF
- Breaks down when b_T gets large

b_* prescription

• A common approach to regulating large b_T behavior

$$\mathbf{b}_{*}(\mathbf{b}_{T})\equiv rac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2}/b_{\max}^{2}}}.$$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics

- At small b_T , $b_*(b_T) = b_T$
- At large b_T , $b_*(b_T) = b_{\max}$

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

 e^{-}

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\max}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$= \frac{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{b}_{\mathrm{max}})}{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \zeta, \mu)} e^{g_{K}(b_{\mathrm{T}}; b_{\mathrm{max}}) \ln(\sqrt{\zeta}/Q_{0})}.$$

TMD factorization in Drell-Yan

• In small- $q_{\rm T}$ region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

. .

. . .

MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a complicated form for the non-perturbative function

$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2},$$

$$g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}}(1 - x)^{\alpha_{\{1,2,3\}}^{2}}}{\hat{x}^{\sigma_{\{1,2,3\}}}(1 - \hat{x})^{\alpha_{\{1,2,3\}}^{2}}},$$

$$g_{K}(\boldsymbol{b}_{T}^{2}) = -g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2} \quad \text{Universal CS kernel}$$

 11 free parameters for each hadron! (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

Resulting χ^2 for each parametrization

 Tried multiple parametrizations for nonperturbative TMD structures

MAP
 parametrization
 is able to
 describe better
 all the datasets

Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton

$$\tilde{f}_{q/A}(x,b_T,\mu,\zeta) = \frac{Z}{A}\tilde{f}_{q/p/A}(x,b_T,\mu,\zeta) + \frac{A-Z}{A}\tilde{f}_{q/n/A}(x,b_T,\mu,\zeta)$$

- Each object on the right side independently obeys the CSS equation
 - Assumption that the bound proton and bound neutron follow TMD factorization
- Make use of isospin symmetry in that $u/p/A \leftrightarrow d/n/A$, etc.

Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the flavor-dependent pieces of the TMD PDF as

$$(C \otimes f)_{u/A}(x)e^{-g_{u/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)} + \frac{A-Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}$$

and

$$(C \otimes f)_{d/A}(x)e^{-g_{d/A}(x,b_T)} \to \frac{Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)} + \frac{A-Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}.$$

Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett **129**, 242001 (2022).

$$g_{q/\mathcal{N}/A} = g_{q/\mathcal{N}} \left(1 - a_{\mathcal{N}} \left(A^{1/3} - 1 \right) \right)$$

• Where $a_{\mathcal{N}}$ is an additional parameter to be fit

Datasets in the q_T -dependent analysis

Expt.	√s (GeV)	Reaction	Observable	Q (GeV)	\boldsymbol{x}_F or \boldsymbol{y}	N _{pts.}
E288 [39]	19.4	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 – 9	y = 0.4	38
E288 [39]	23.8	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^{3}\sigma/d^{3}q$	4 - 12	y = 0.21	48
E288 [39]	24.7	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 - 14	y = 0.03	74
E605 [40]	38.8	$p + Cu \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	7 - 18	$x_F = 0.1$	49
E772 [41]	38.8	$p + D \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	5 – 15	$0.1 \le x_F \le 0.3$	61
E866 [50]	38.8	$p + Fe \rightarrow \ell^+ \ell^- X$	R_{FeBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E866 [50]	38.8	$p+W \to \ell^+\ell^- X$	R_{WBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E537 [38]	15.3	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T$	4 – 9	$0 < x_F < 0.8$	48
E615 [4]	21.8	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T^2$	4.05 - 8.55	$0 < x_F < 0.8$	45

- Total of 383 number of points
- All fixed target, low-energy data
- We perform a cut of $q_T^{\rm max} < 0.25 \ Q$

Transverse EMC effect

- Compare the average b_T given x for the up quark in the bound proton to that of the free proton
- Less than 1 by $\sim 5 10\%$ over the x range

