Boosting Simulations of Hot
Nuclear Matter with Machine
Learning

Brandon Boudreaux

Department of Physics and Astronomy
Wayne State University

P S
R i T
e L3

A special thanks to to The Gordon and Betty
Foundation and the American Physical Society to "mr\alnm

present at the GHP 2023 workshop! J E -'-5 E ﬂ F E




Summer 2022 REU

Chun Shen

Wayne State University

Department of Physics
and Astronomy

Wenbin Zhao
Wayne State University
Department of Physics

and Astronomy

Along with

&0
AEVaLAFE

Numerical Simulations of (3+1)D Hydrodynamics +

hadronic transport hybrid model
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The problem

 Computationally expensive
* [Ime expensive; a single batch run can take 30+ hours to complete
* 10-100 million events are required to ensure enough statistics for observables

e |tis to find ways to reduce computational costs
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ML Model

Can we create a machine
learning model that can learn
the correlation between the
initial state and the final state?
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 Represents a data point

 When you combine more than one,
you can represent an array of data.

* Placing multiple sets of neurons
together forms the layers of the
network



Network Structure Weights
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Network Structure
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Network Structure

bj is the linear

combinations of all of its
weights and connections
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Non-linearity

Leaky RelU activation function RelLU activation function SELU activation function




Error Calculation
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Traversing the ‘loss surface’

Loss Surface

Optimization Algorithms traverse the ‘loss
surface’ to look for the global minimum over L
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e Stochastic Gradient Decent

e Adam

e Adamax
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Net Baryon Charge Rapidity Distribution

It starts here

e Au + Au collisions

Net Proton Rapidity Distribution

e 19.0 GeV
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Structure
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* Trained on 5,000 pre-simulated
initial and final states

» 3 fully connected layers

* | eaky RelLU reduces ‘dead
neurons’

N194 Afea

 Roughly analogous to a
polynomial regression

Output

Neurons: 141
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Training iterations

Step 1 Step 17

Model vs Real Simulated Model vs Real Simulated

—— Model Generated — Model Generated
—— Real Simulation —— Real Simulation
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Training iterations

Step 58 Step 433

Model vs Real Simulated Model vs Real Simulated

— Model Generated —— Model Generated
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Training iterations

Step 603 Step 942

Model vs Real Simulated Model vs Real Simulated

— Model Generated —— Model Generated
—— Real Simulation ~. —— Real Simulation
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Model Validation

e Model Is shown new Initial Model vs Real Simulated
states that it was not trained on

* \We can compare the expected
output versus the generated
output

¢ Spikes/noise is already
accounted for as statistical
fluctuations
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Model Validation

* Model is shown new initial
States that it WaS nOt trained On Model vs Real Simulated

e 5,000 validation events

 \We can compare the expected
output versus the generated
output

e Spikes/noise is already
accounted for as statistical
fluctuations
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Model Validation

Model vs Real Simulated
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Results

S python main.py -d datasets/nB_etas_distribution_N_141.dat
{'gridNx': 141, 'model': 'baryon_model_19.6gev.pt'}

(100000,: 1,..141)

Run time: :/.4340500354/6685 seconds
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Model Validation

Real simulations vs model
generated area for [—2,2 ]

Actual vs Generated Net Protons

Real Final State Generated Final
State _
Mean 3.17 +- 0.35 3.23 +- 0.36 g
Varience 14.22 +- 0.50 13.51 +- 0.44
Skew 1.25 +- 0.74 1.14 +- 0.61
Kurtosis 3.60 +- 4.05 3.20 +- 2.90
Nze(; Protons(Actual) 30
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A note on model generalization

Model vs Real Simulated

 Minimum Bias — Peripheral
collisions get worse

 May not be a significant problem
outside of model generalization
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Conclusion

* 1,000,000 final states can be generated in less than 30 seconds

. 0(10°) speed up from 30 hours to a few seconds on an event-by-event basis

Future Plans:

» (Calculate high-order cumulants for net protons at the RHIC BES program

» Expand neural network emulation for anisotropic flow vector v, ()
A more complex design may be needed

* Deploy neural network emulation as low fidelity simulations for Baysian
Interface analysis
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Questions?



