Boosting Simulations of Hot Nuclear Matter with Machine Learning

Brandon Boudreaux

Department of Physics and Astronomy Wayne State University

> A special thanks to to The Gordon and Betty Foundation and the American Physical Society to present at the GHP 2023 workshop!

DUDUDUDU

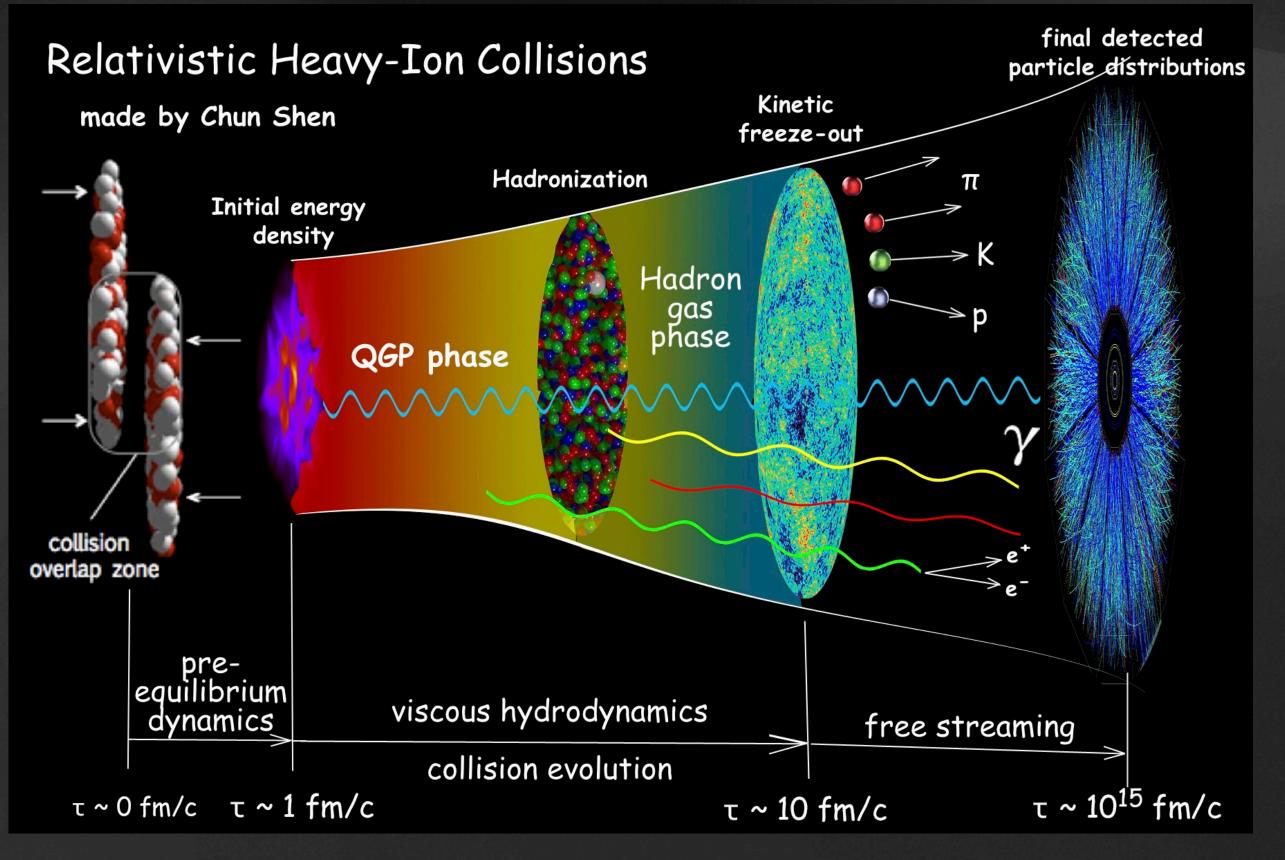
Summer 2022 REU

Chun Shen Wayne State University Department of Physics and Astronomy

Wenbin Zhao Wayne State University Department of Physics and Astronomy

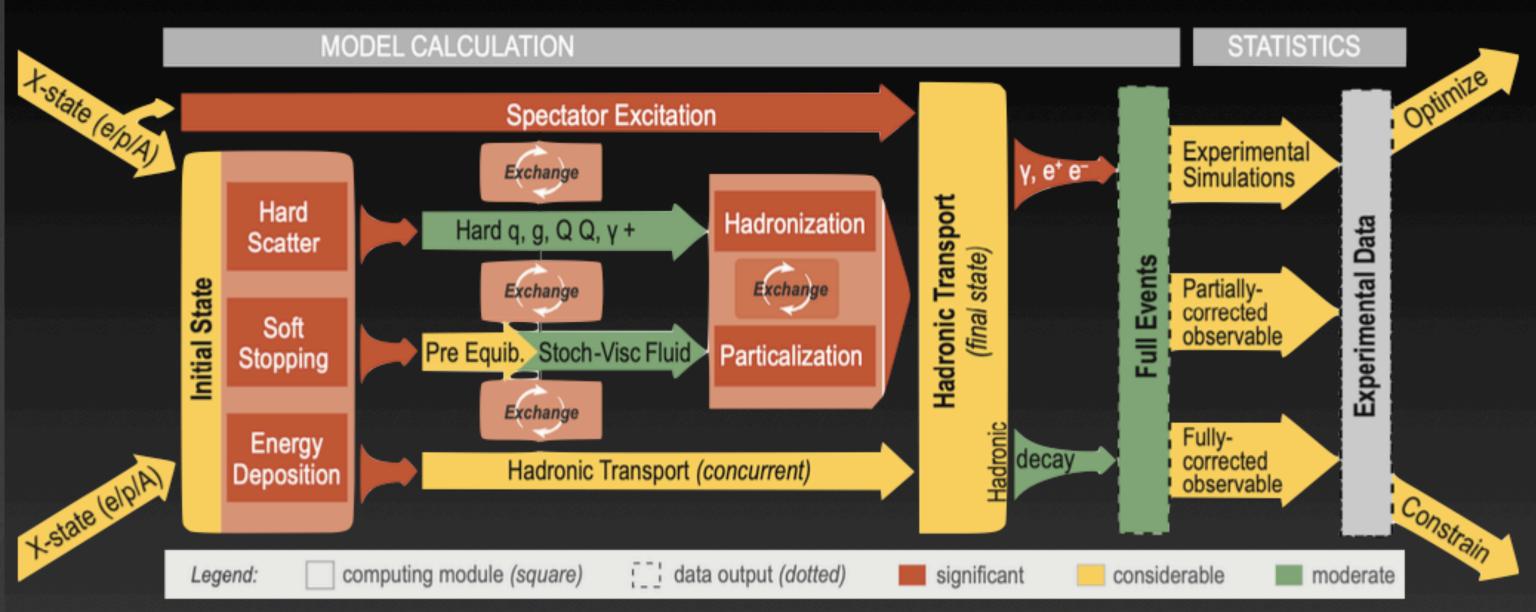
Along with

Numerical Simulations of (3+1)D Hydrodynamics + hadronic transport hybrid model

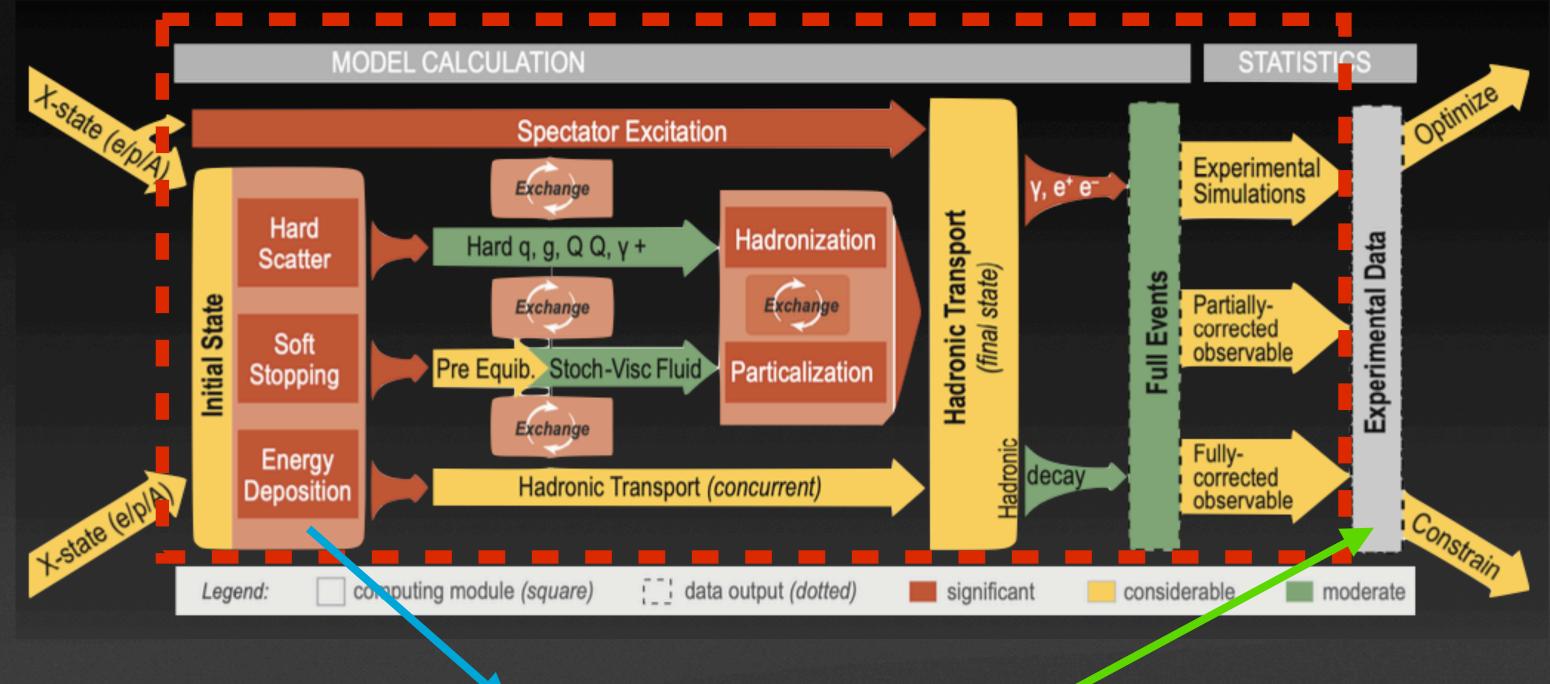


The problem

- Computationally expensive
- Time expensive; a single batch run can take 30+ hours to complete
- 10-100 million events are required to ensure enough statistics for observables
- It is critical to find ways to reduce computational costs



The problem

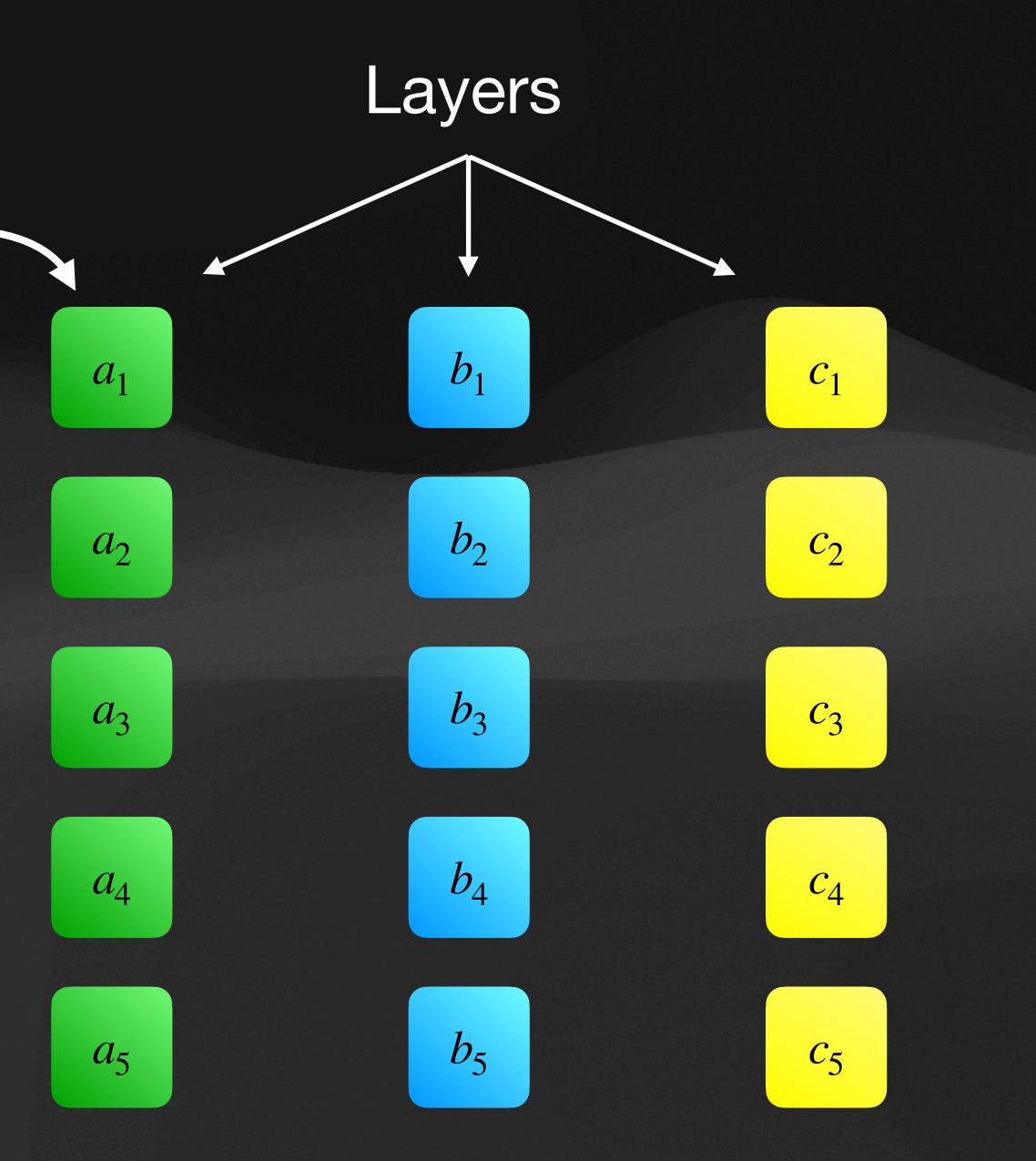


Can we create a machine learning model that can learn the correlation between the initial state and the final state?

ML Model

The Neuron-

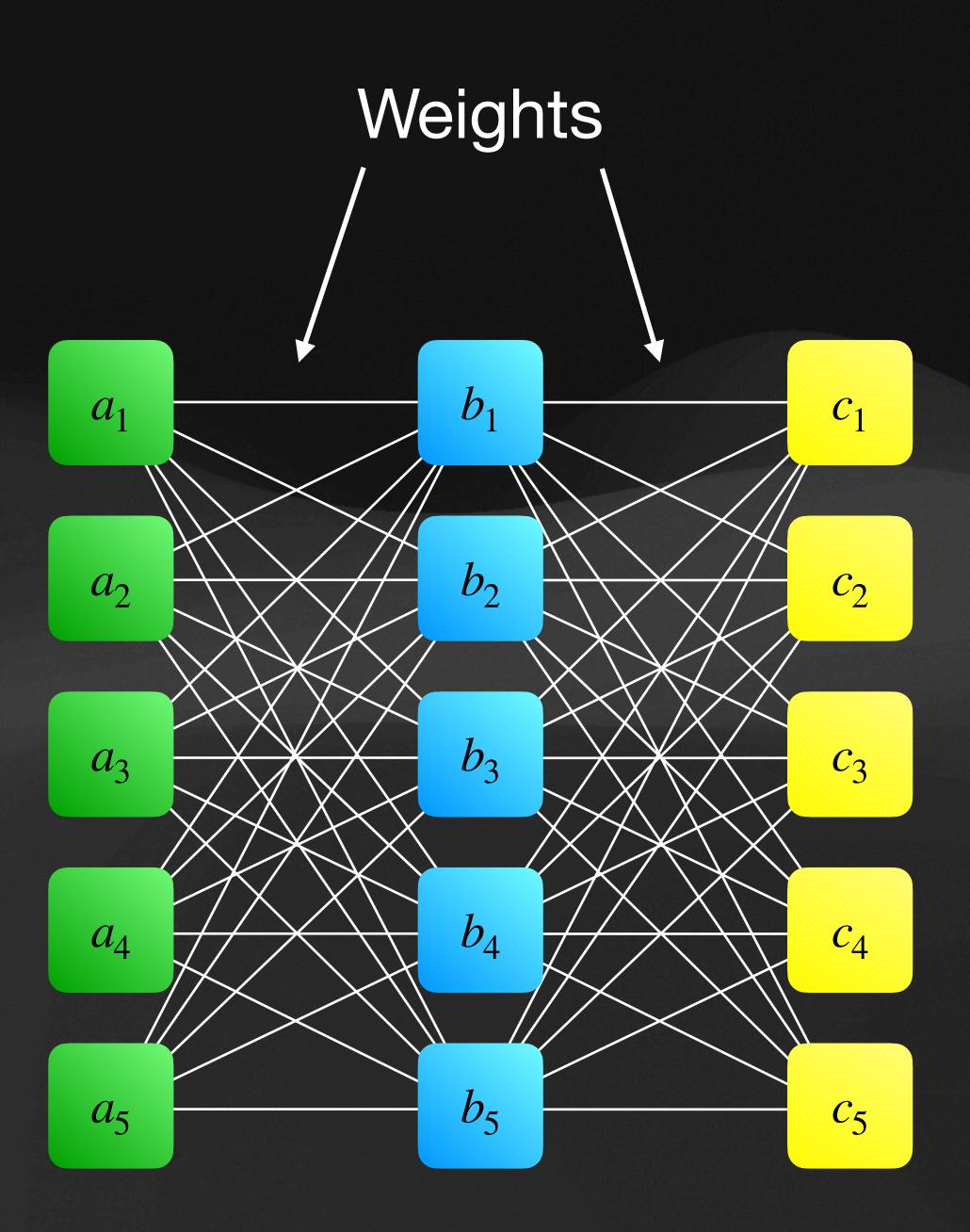
- Represents a data point
- When you combine more than one, you can represent an array of data.
- Placing multiple sets of neurons together forms the layers of the network

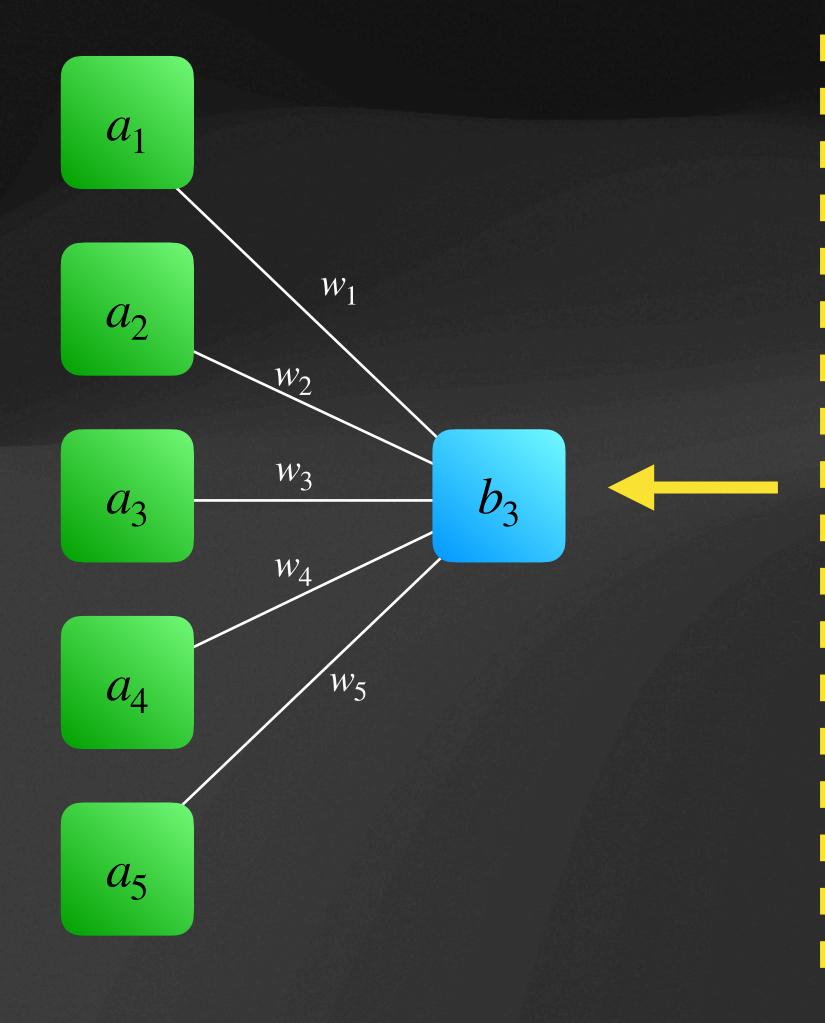


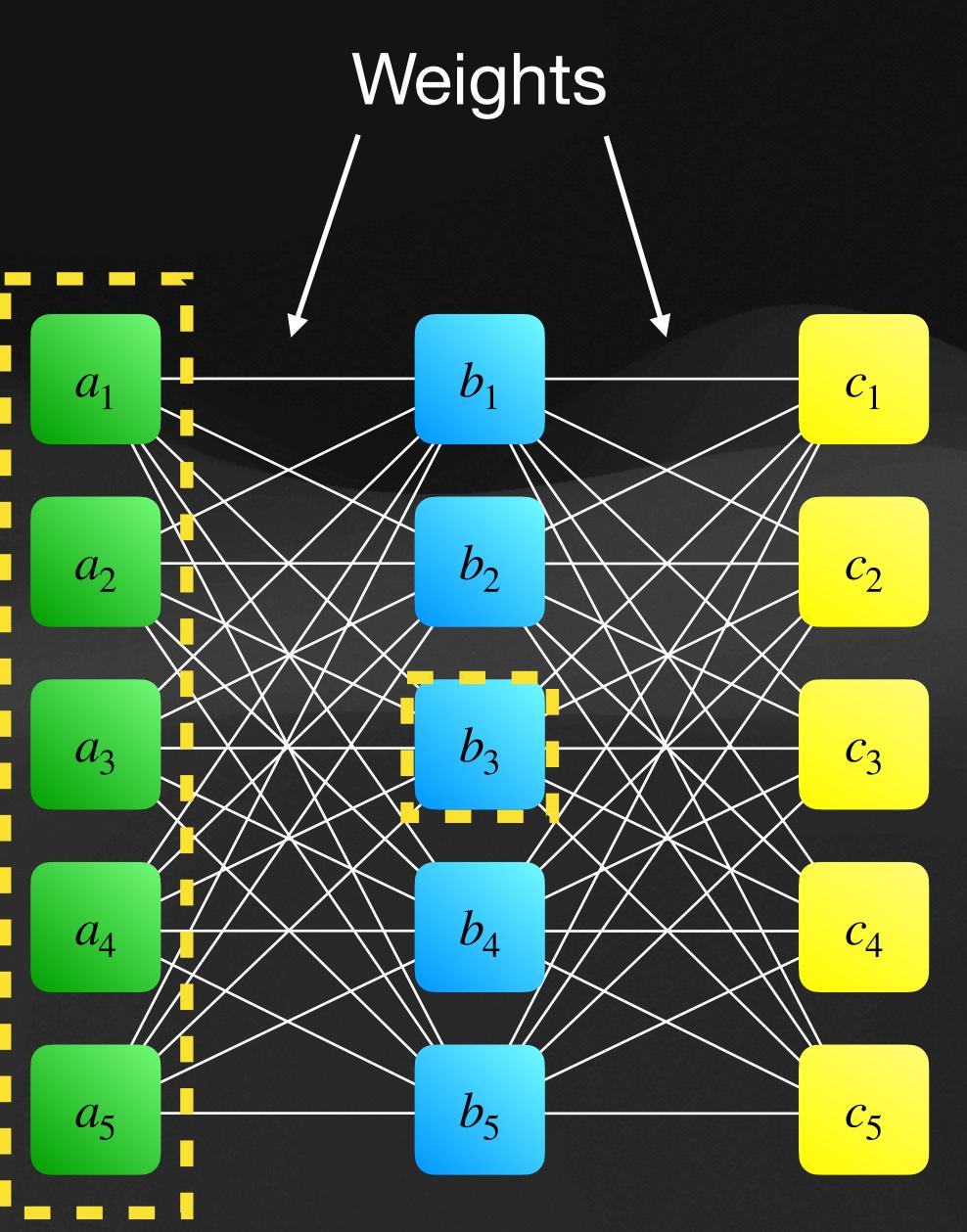
5

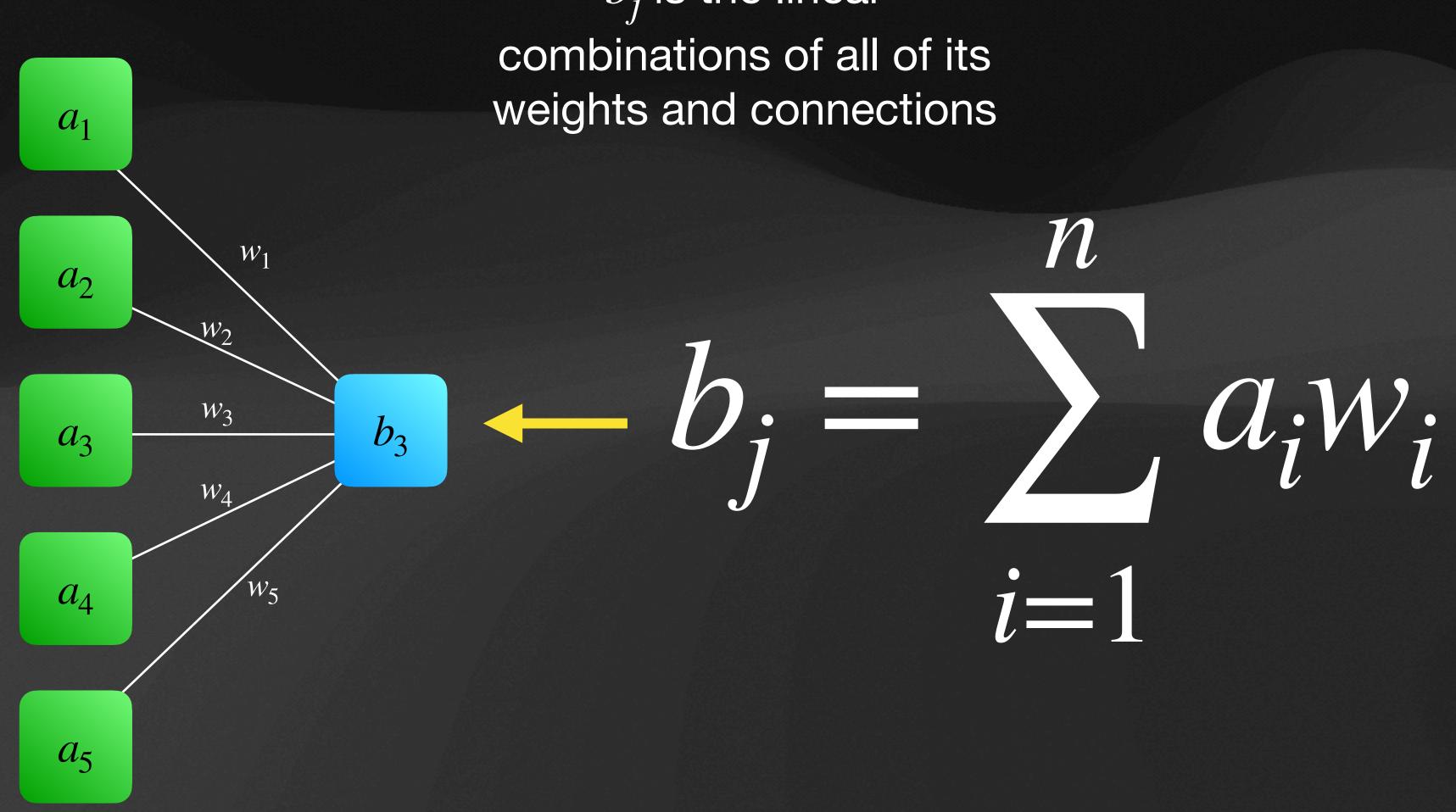
Each neuron in connected by a weight

The weights are the parameters that we are training!



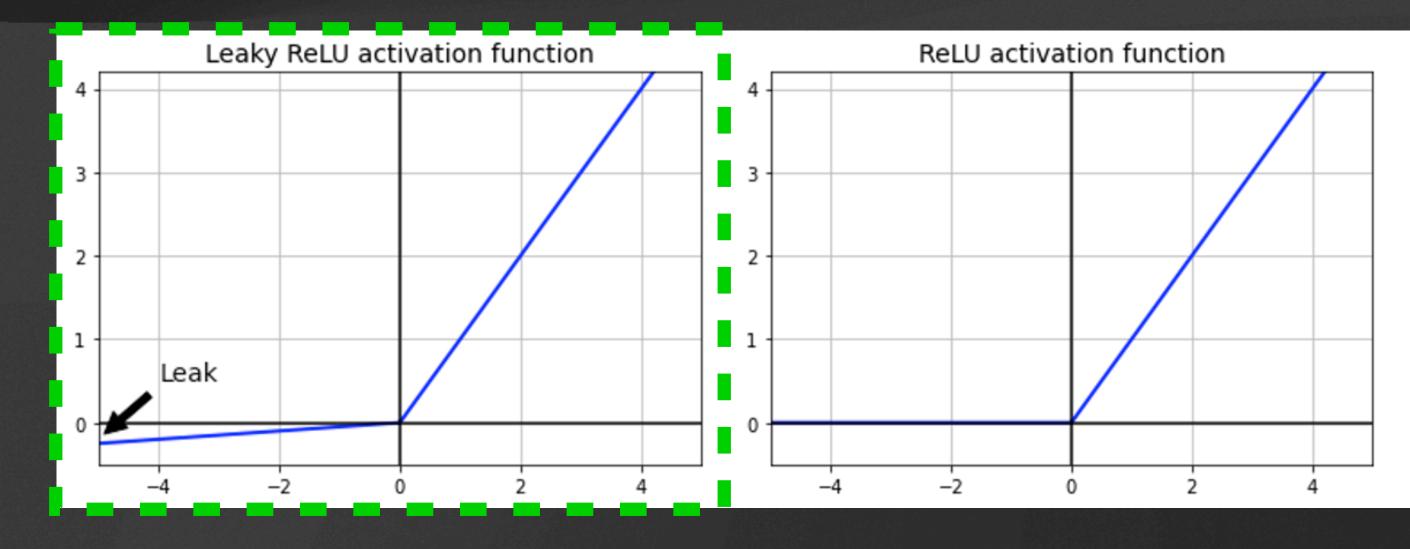




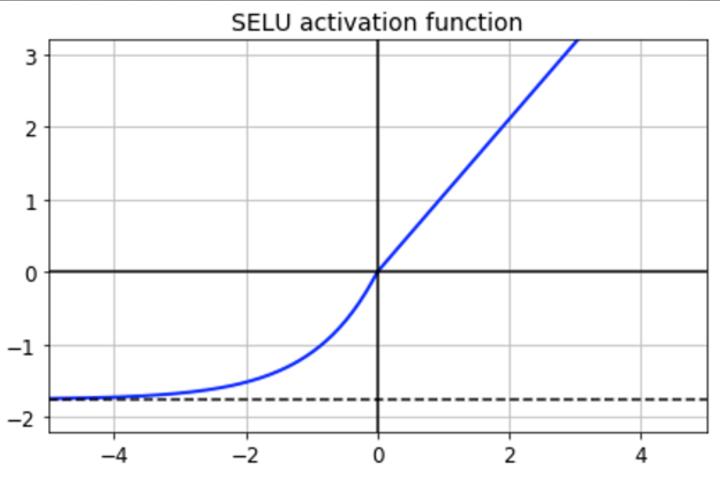


 b_i is the linear

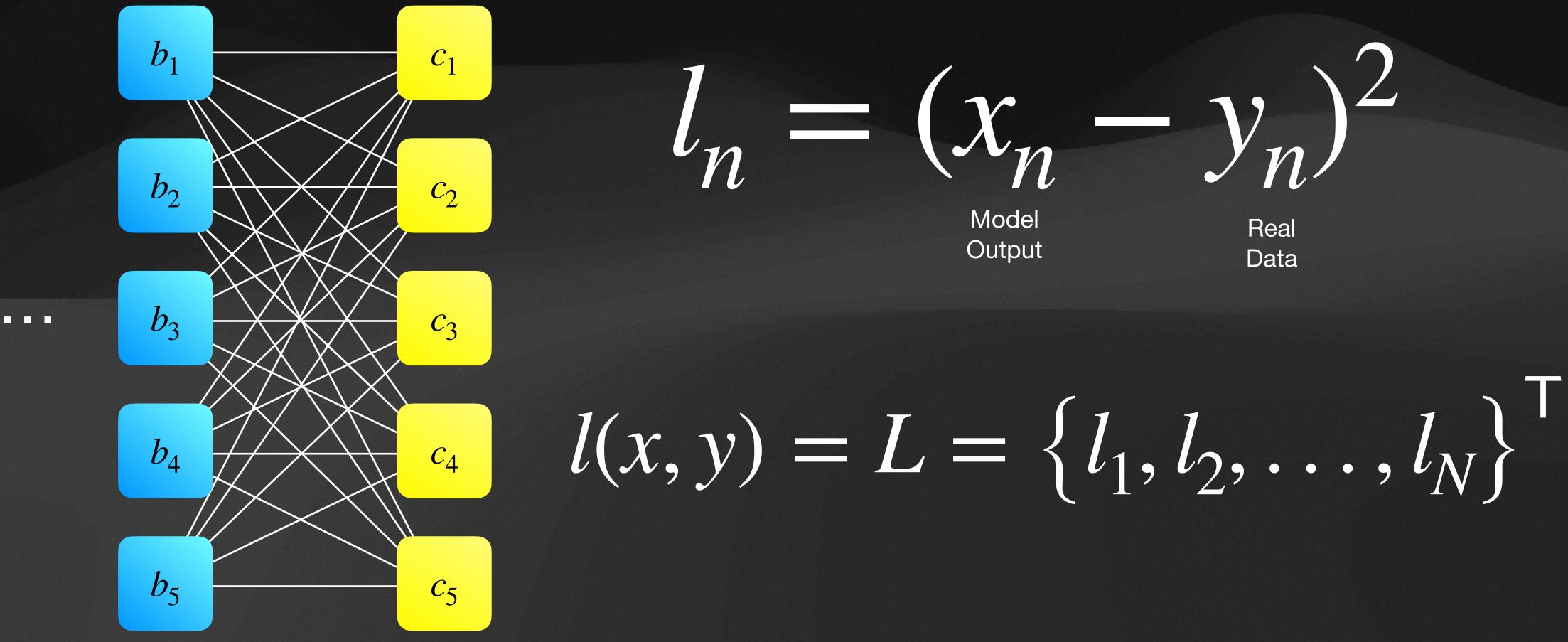
Non-linearity



 $b_j = ReLU \left(\sum_{i=1}^{n} a_i w_i \right)$



Error Calculation

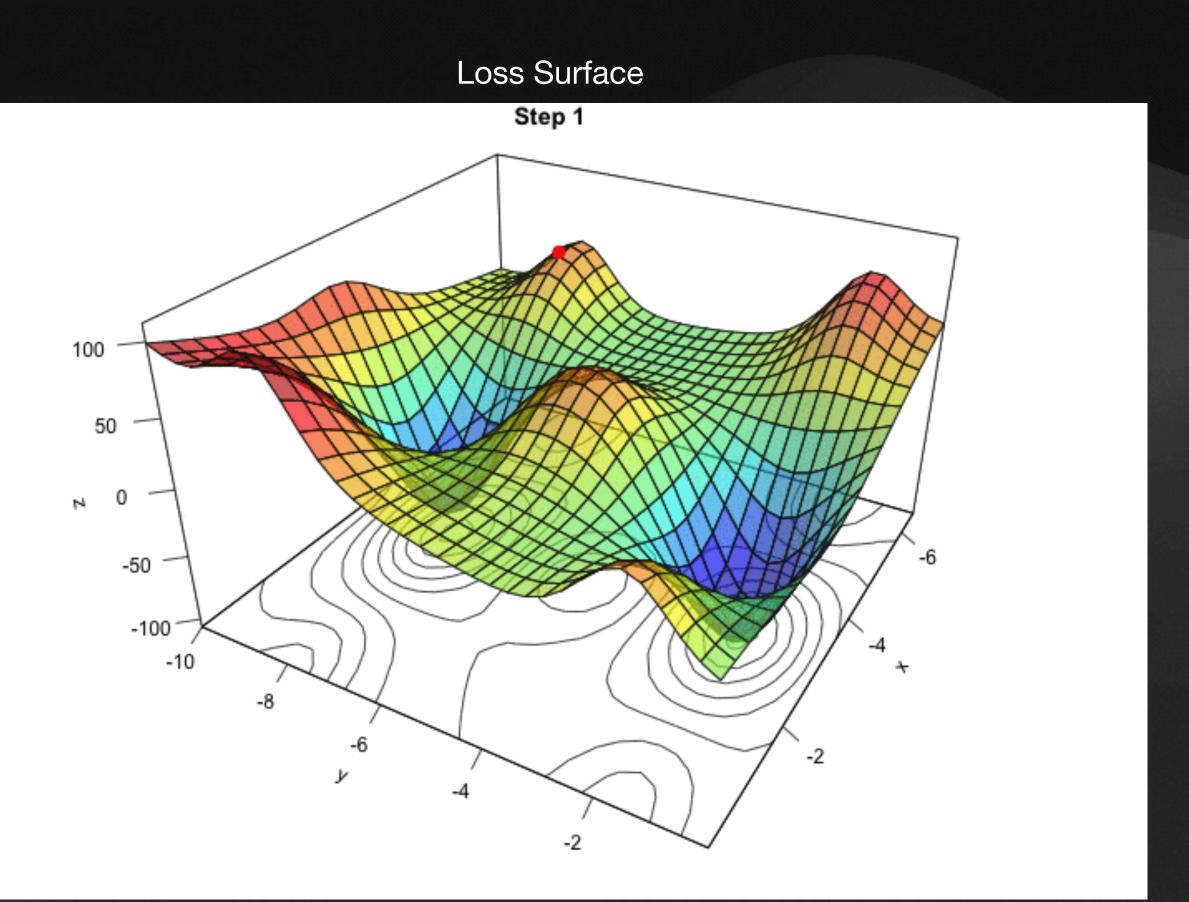


Traversing the 'loss surface'

Optimization Algorithms traverse the 'loss surface' to look for the global minimum over L

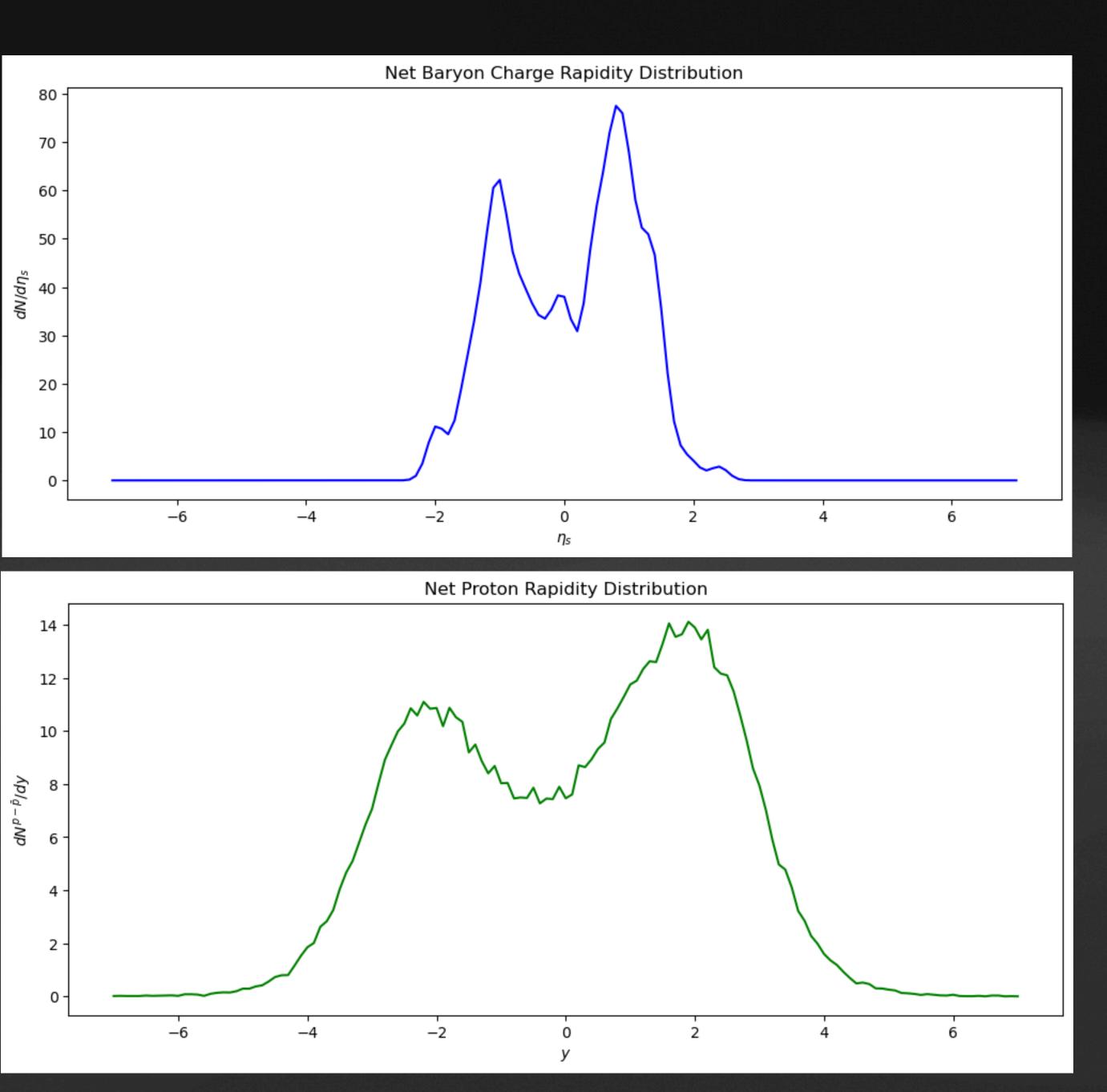
Common Optimizers:

- Gradient Decent (Depicted)
- Stochastic Gradient Decent
- Adam
- Adamax



It starts here

- Au + Au collisions
- 19.6 GeV



12

Structure

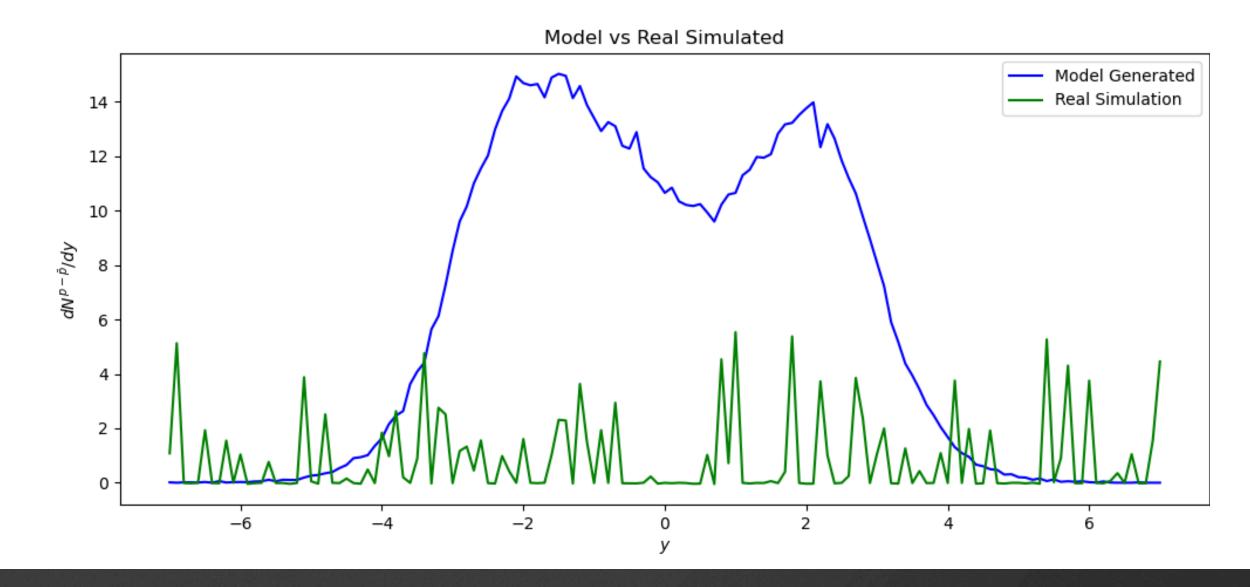
- Trained on 5,000 pre-simulated initial and final states
- 3 fully connected layers
- Leaky ReLU reduces 'dead neurons'
- Roughly analogous to a polynomial regression

Linear Layer Neurons: 256

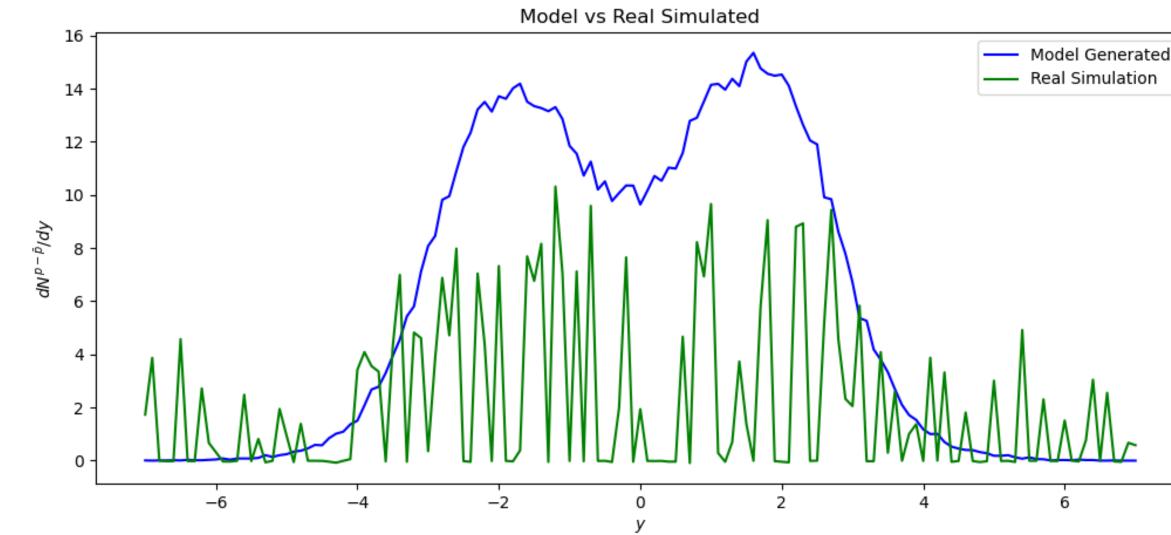
Output Neurons: 141

Training iterations

Step 1

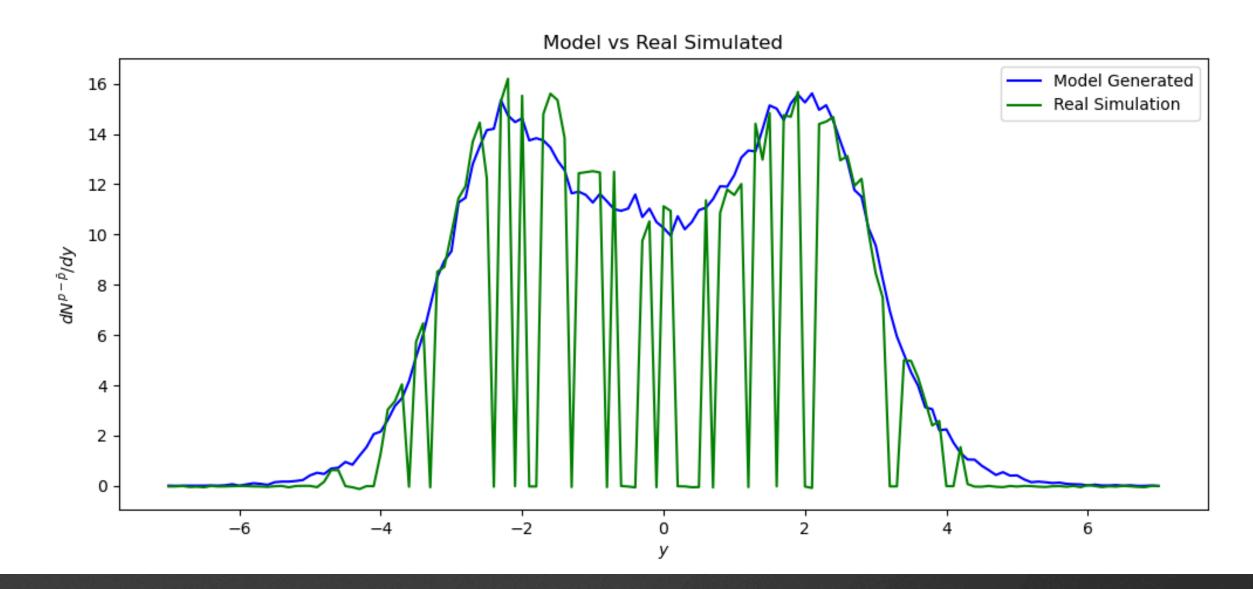


Step 17

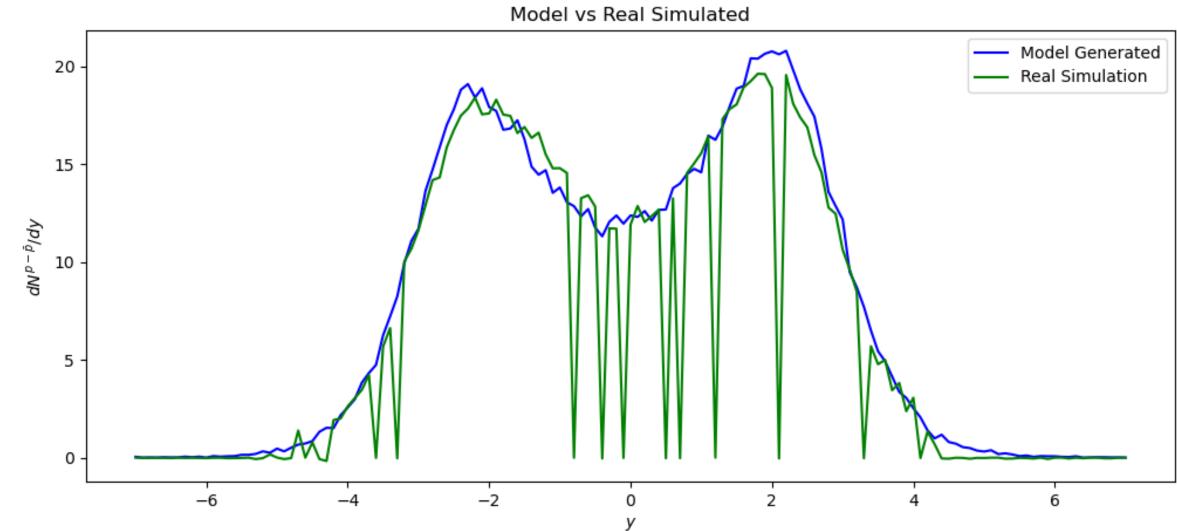


Training iterations

Step 58

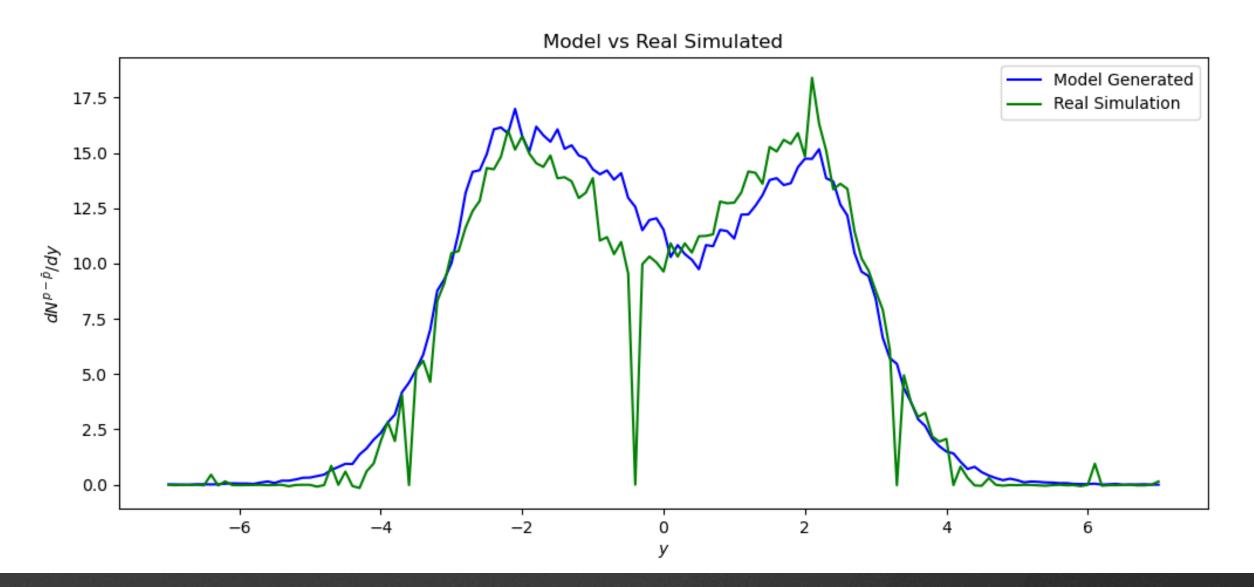


Step 433

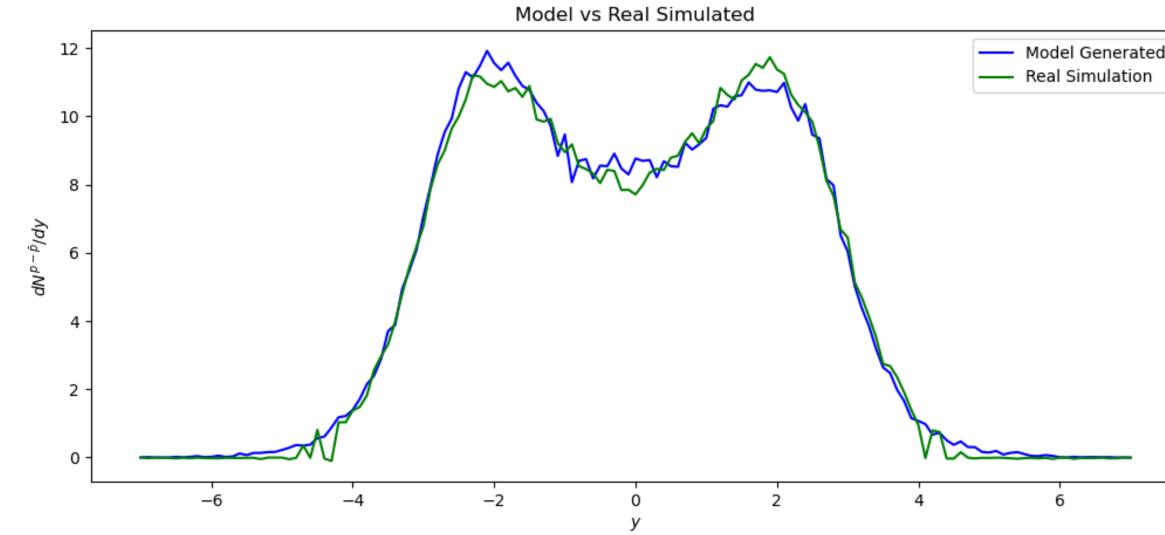


Training iterations

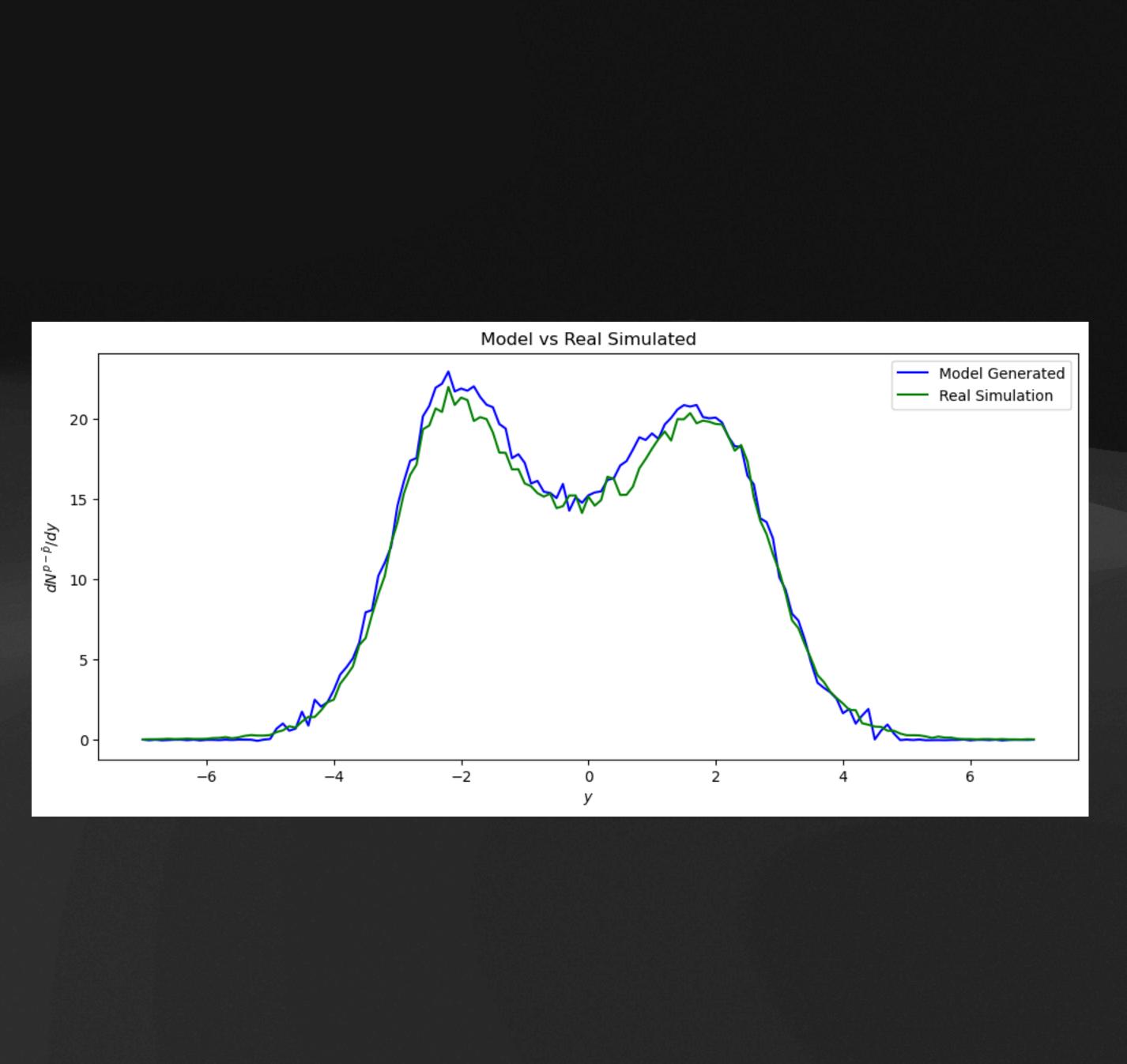
Step 603



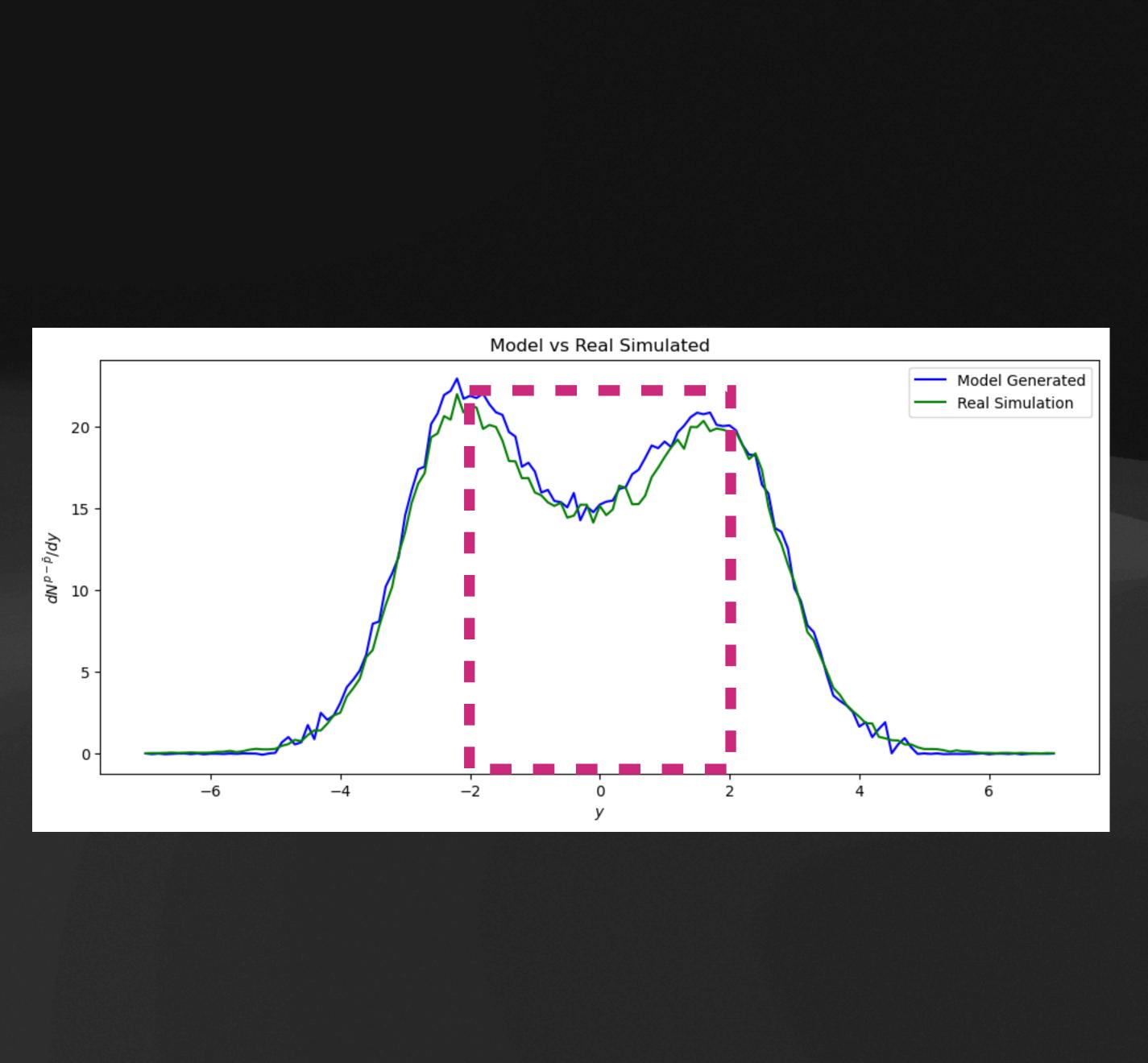
Step 942

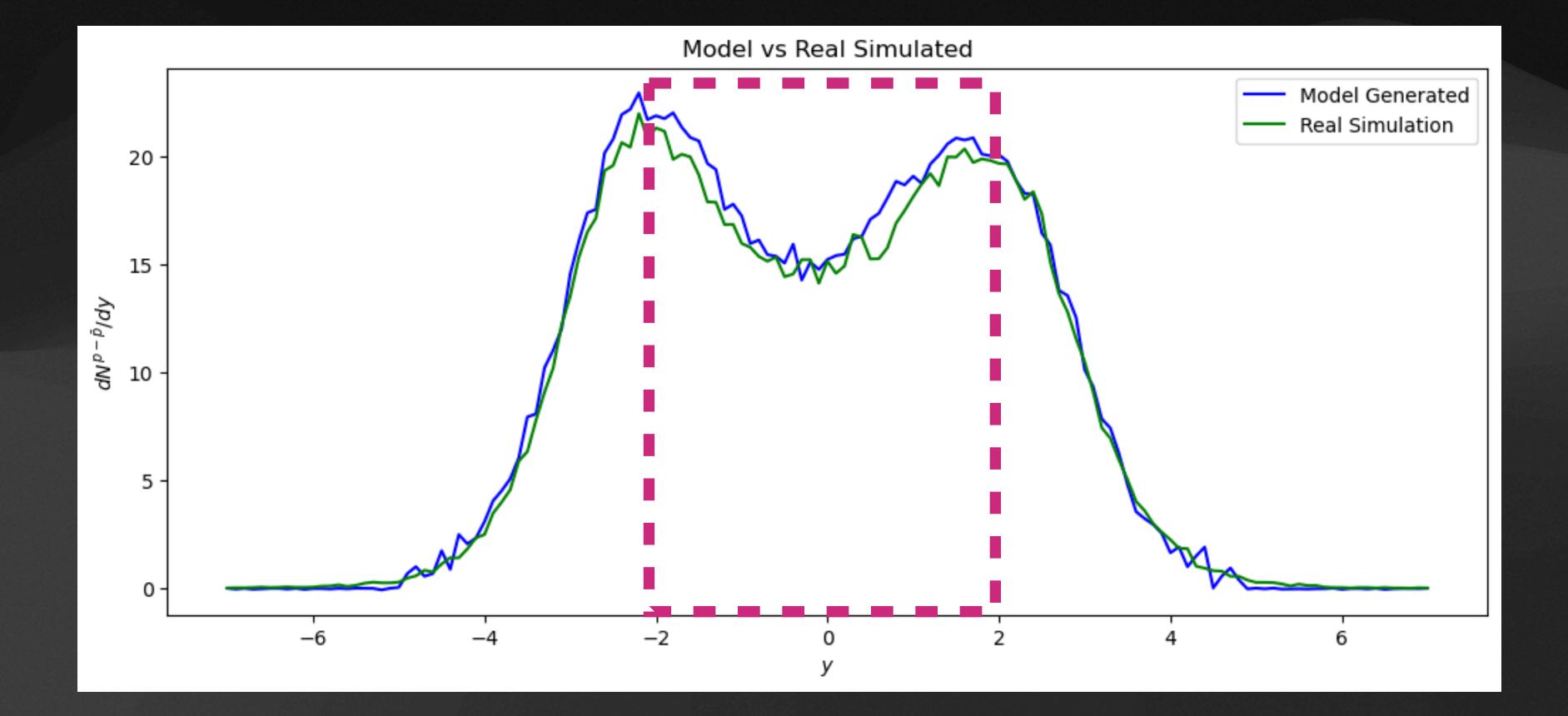


- Model is shown new initial states that it was not trained on
- We can compare the expected output versus the generated output
- Spikes/noise is already accounted for as statistical fluctuations



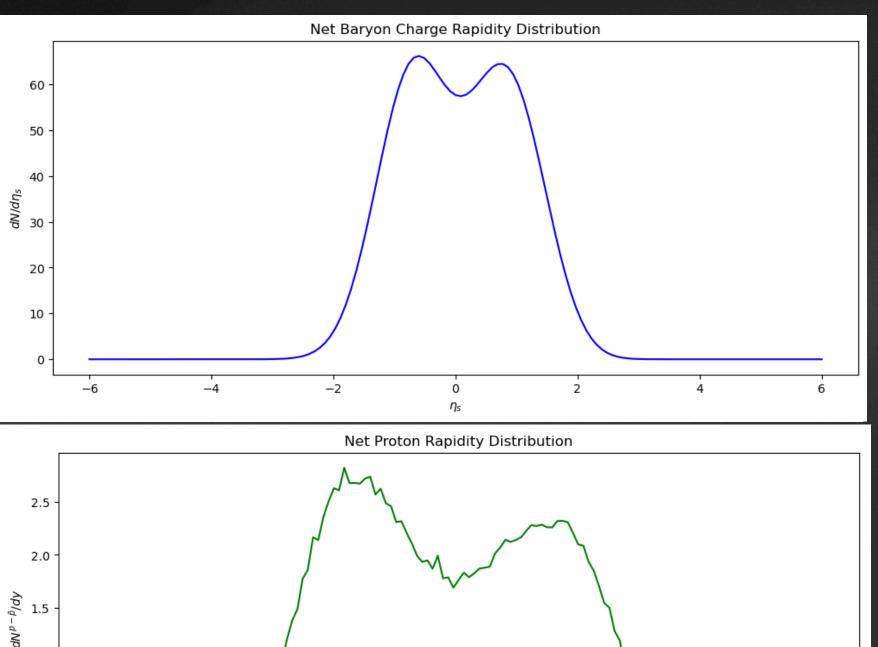
- Model is shown new initial states that it was not trained on
- 5,000 validation events
- We can compare the expected output versus the generated output
- Spikes/noise is already accounted for as statistical fluctuations





19

Results \$ python main.py -d datasets/nB_etas_distribution_N_141.dat {'gridNx': 141, 'model': 'baryon_model_19.6gev.pt'} (100000, 1, 141) Run time: 7.484050035476685 seconds



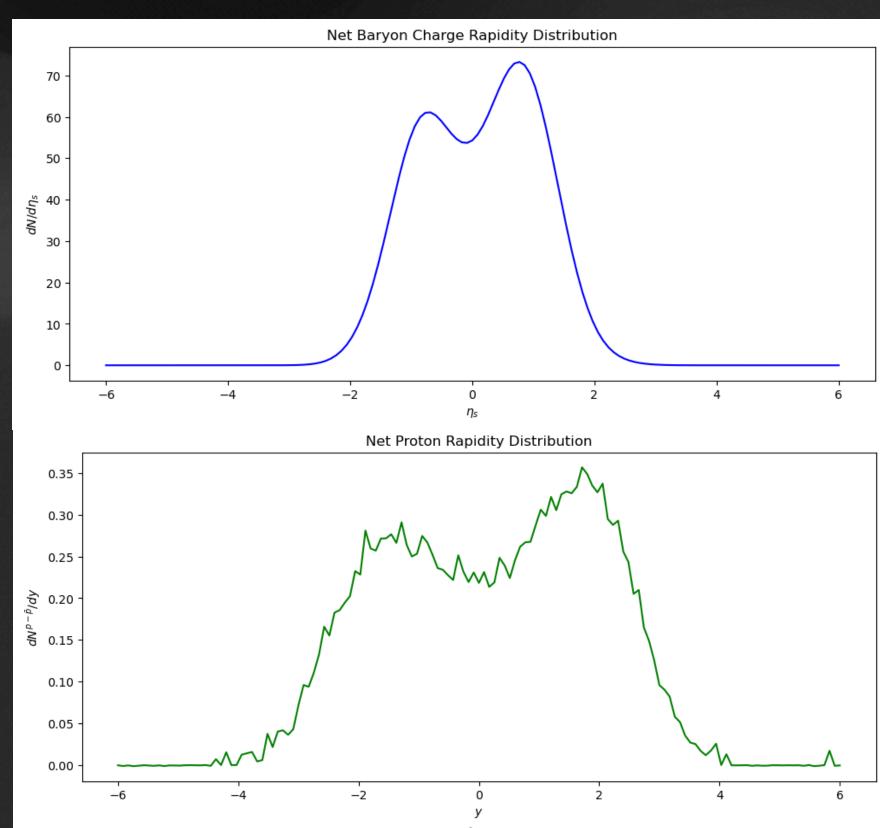
1.0

0.5

0.0

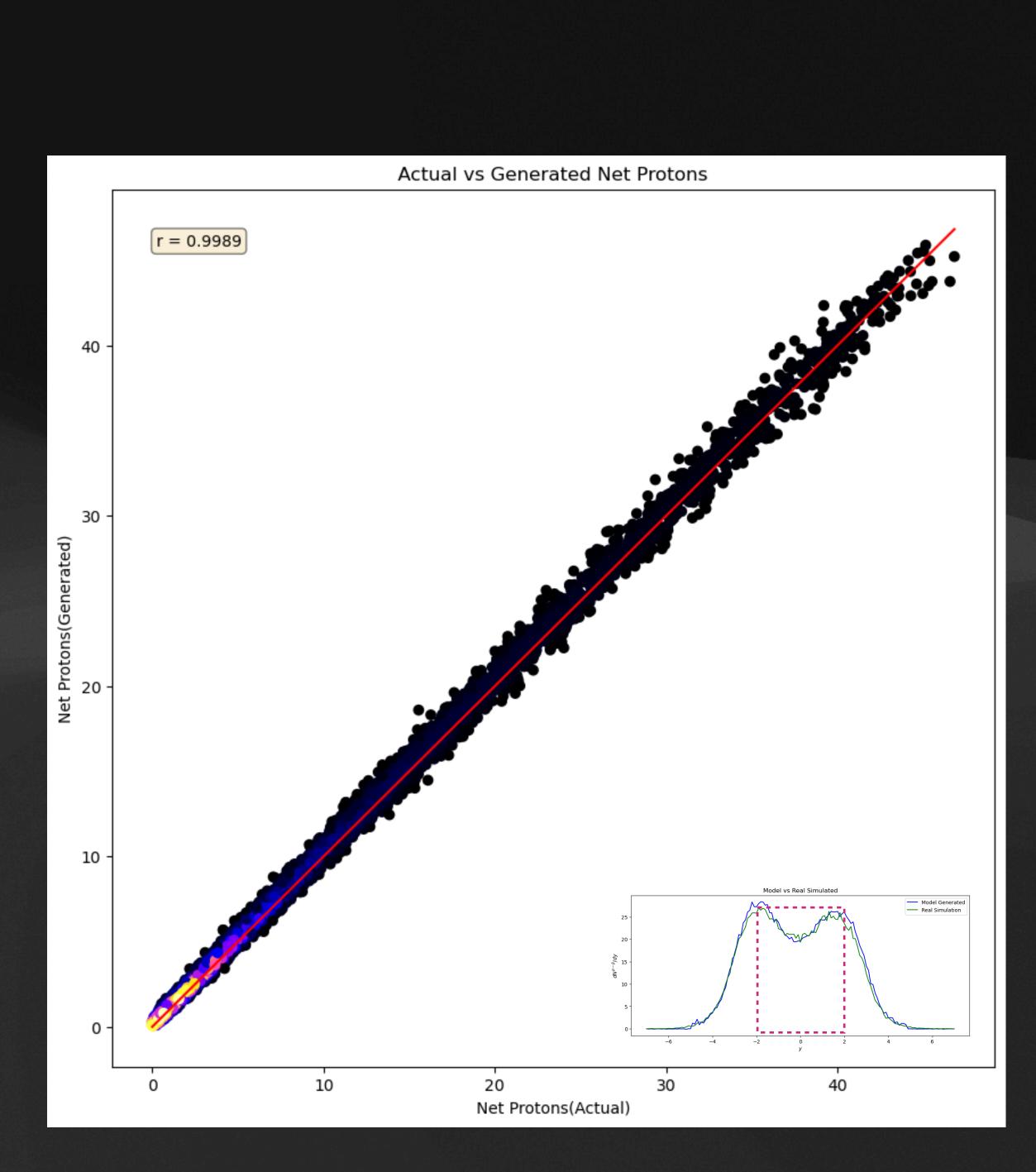
-4

-2



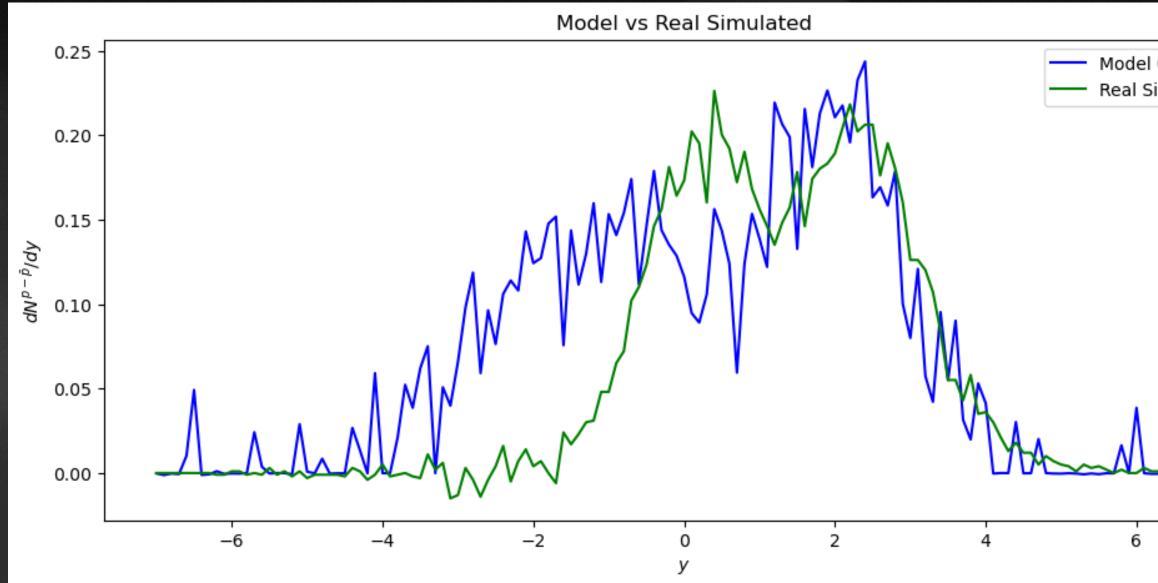
Real simulations vs model generated area for [-2,2]

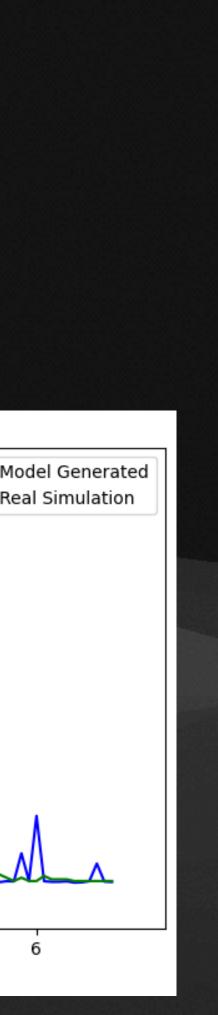
	Real Final State	Generated Final State
Mean	3.17 +- 0.35	3.23 +- 0.36
Varience	14.22 +- 0.50	13.51 +- 0.44
Skew	1.25 +- 0.74	1.14 +- 0.61
Kurtosis	3.60 +- 4.05	3.20 +- 2.90



A note on model generalization

- Minimum Bias Peripheral collisions get worse
- May not be a significant problem outside of model generalization





Conclusion

- 1,000,000 final states can be generated in less than 30 seconds
- $O(10^5)$ speed up from 30 hours to a few seconds on an event-by-event basis

Future Plans:

- Calculate high-order cumulants for net protons at the RHIC BES program
- Expand neural network emulation for anisotropic flow vector $v_n(\eta)$
 - A more complex design may be needed
- Deploy neural network emulation as low fidelity simulations for Baysian Interface analysis

Questions?