
Boosting Simulations of Hot 
Nuclear Matter with Machine 
Learning
Brandon Boudreaux 
Department of Physics and Astronomy 
Wayne State University

1

A special thanks to to The Gordon and Betty 
Foundation and the American Physical Society to 

present at the GHP 2023 workshop!



Chun Shen 
Wayne State University

Department of Physics 

and Astronomy

Summer 2022 REU

Along with

Numerical Simulations of (3+1)D Hydrodynamics + 
hadronic transport hybrid model

2

Wenbin Zhao 
Wayne State University

Department of Physics 

and Astronomy



The problem
• Computationally expensive


• Time expensive; a single batch run can take 30+ hours to complete


• 10-100 million events are required to ensure enough statistics for observables


• It is critical to find ways to reduce computational costs
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Can we create a machine 
learning model that can learn 
the correlation between the 

initial state and the final state?

ML Model

4

The problem



Layers

• Represents a data point


• When you combine more than one, 
you can represent an array of data.


• Placing multiple sets of neurons 
together forms the layers of the 
network
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Network Structure



Weights

Each neuron in connected by a weight

0.23(0.97)0.97
0.23

The weights are 
the parameters 

that we are 
training!

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

6

Network Structure
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Network Structure Weights



bj =
n

∑
i=1

aiwib3
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 is the linear 
combinations of all of its 
weights and connections

bj
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Network Structure



bj = ReLU (
n

∑
i=1

aiwi)
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Non-linearity
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ln = (xn − yn)2
Model 
Output

Real

Data

l(x, y) = L = {l1, l2, . . . , lN}𝖳
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Error Calculation



Optimization Algorithms traverse the ‘loss 
surface’ to look for the global minimum over L

Loss Surface

Common Optimizers:


• Gradient Decent (Depicted)


• Stochastic Gradient Decent


• Adam


• Adamax
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Traversing the ‘loss surface’



It starts here
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• Au + Au collisions


• 19.6 GeV



Input 
Neurons: 141

Linear Layer 
Neurons: 256

Leaky ReLU

Output 
Neurons: 141

Leaky ReLU• Trained on 5,000 pre-simulated 
initial and final states


• 3 fully connected layers


• Leaky ReLU reduces ‘dead 
neurons’


• Roughly analogous to a 
polynomial regression
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Structure



Step 17Step 1
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Training iterations



Step 433Step 58
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Training iterations



Step 942Step 603
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Training iterations



17

Model Validation

• Model is shown new initial 
states that it was not trained on


• We can compare the expected 
output versus the generated 
output


• Spikes/noise is already 
accounted for as statistical 
fluctuations
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Model Validation
• Model is shown new initial 

states that it was not trained on


• 5,000 validation events


• We can compare the expected 
output versus the generated 
output


• Spikes/noise is already 
accounted for as statistical 
fluctuations
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Model Validation
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Results
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Real simulations vs model 
generated area for [−2,2]

Real Final State Generated Final 
State

Mean 3.17 +- 0.35 3.23 +- 0.36

Varience 14.22 +- 0.50 13.51 +- 0.44

Skew 1.25 +- 0.74 1.14 +- 0.61

Kurtosis 3.60 +- 4.05 3.20 +- 2.90

Model Validation



• Minimum Bias — Peripheral 
collisions get worse


• May not be a significant problem 
outside of model generalization
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A note on model generalization



Future Plans: 

• Calculate high-order cumulants for net protons at the RHIC BES program


• Expand neural network emulation for anisotropic flow vector 


• A more complex design may be needed


• Deploy neural network emulation as low fidelity simulations for Baysian 
Interface analysis

vn(η)
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• 1,000,000 final states can be generated in less than 30 seconds


•  speed up from 30 hours to a few seconds on an event-by-event basisO(105)

Conclusion



Questions?
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