Femtoscopic correlation between D⁰ meson and charged hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Priyanka Roy Chowdhury (for the STAR collaboration)

Warsaw University of Technology, Poland

10th Workshop of the APS Topical Group on Hadronic Physics April 14, 2023

Supported by the

Supported in part by the

Outline

- Introduction
 - Motivation
 - Femtoscopic correlation
- Experiment
 - ✤ STAR detector system
 - ➔ D⁰ reconstruction
 - ✤ Particle identification
- Methodology
 - Correlation function calculation
- Summary

Motivation

- → Heavy quarks (c and b) produced early in collisions → useful to probe all stages of heavy-ion collisions
- → Suppression of D⁰ meson at high p_T and significant D⁰ elliptic flow observed in heavy-ion collisions at RHIC

1.5

(a)

Au+Au \s_{NN} = 200 GeV 0-10%

- → Strong interaction of charm with quark-gluon plasma
- New measurements to constrain different models and gain further insights to QGP properties

Motivation

- Femtoscopic correlations sensitive to the interactions in the final state as well as the extent of the region from which correlated particles are emitted
- *Length of homogeneity* or the average distance between emission points of D⁰-hadron pair
- Can provide additional information about the correlation of hadrons and charmed mesons at the freeze-out

Priyanka Roy Chowdhury

Femtoscopic correlation

- Femtoscopic correlations are observed between pair of particles with low relative momentum
- It is measured as a function of the reduced momentum difference (k^{*}) of the pair of particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 \mathrm{d}^3 r^*, \qquad (1)$$

where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector (length of homogeneity) $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function

- ➤ Femtoscopic Correlation ►QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein QS or Fermi-Dirac QS
 - ▶ Final-State-Interaction [FSI]: Strong & Coulomb interaction

Lednický-Lyuboshitz model

The Lednicky–Lyuboshitz analytical model connects the correlation function with final-state strong interaction parameters

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\operatorname{Re}(f^S)(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\operatorname{Im}(f^S(k^*))}{r_0} F_2(Qr_0) \right]$$
(2)

where,
$$Q = 2k^*$$
,
 $F_1(z) = \int_0^z dx e^{x^2 - z^2}/z$
 $F_2(z) = (1 - e^{-z^2})/z$.

• This model assumes \vec{r}^* (average separation vector) from eq. (1), follows Gaussian distribution

$$d^3 N/d^3 r^* \sim e^{-\mathbf{r}^{*2}/4r_0^2},\tag{3}$$

where, r_0 is effective radius of the source

Priyanka Roy Chowdhury

What can we learn from femtoscopy?

- Parameters of final-state interactions
- Example: interaction between antiprotons is the same as between protons

https://www.bnl.gov/newsroom/news.php?a=111786

STAR, Nature 527 (2015) 345

Priyanka Roy Chowdhury

What can we learn from femtoscopy?

Properties of the nuclear medium

→ Example: The source size measured at RHIC with kaons compatible with model calculations employing hydrodynamics
 → local thermal equilibrium

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 2005.55:357-402

Priyanka Roy Chowdhury

What do we know already about D-hadron femtoscopy?

- First studies of D-hadron interactions in pp by the ALICE experiment
 - Search for new molecular states
 - → Measurement of scattering lengths of interactions between charm mesons and light hadrons
- Small values found suggest small role of D meson re-scattering in the hadronic phase of heavyion collisions

What can we expect?

→ D⁰-Kaon and D⁰-pion femtoscopic correlation function:

The larger the source size, the smaller the correlation effect

M. Albaladejo , J. Nieves, E. Ruiz Arriola, arXiv:2304.03107v1

- → How to interpret the source size R results for heavy-ion collisions?
- → Large source size → thermalization of charm quarks with the QGP medium (?)
- → Small source size → information about the in-medium charm interaction and screening length for strong interactions (?)
- One needs calculation for C(k*) from models that include details of charm in-medium interaction

1(

Priyanka Roy Chowdhury

STAR (Solenoidal Tracker At RHIC)

Priyanka Roy Chowdhury

Particle Identification (PID)

STAR, PRC 99, 034908 (2019)

Particle identification using TPC (left) and TOF (right)

Priyanka Roy Chowdhury

Reconstruction of D⁰ meson

STAR, PRC 99, 034908 (2019)

Topological selection cuts for D⁰ reconstruction:

- Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:
 - a) K⁻ & π⁺ DCA₁₂
 b) π⁺ & PV DCA_π
 c) K⁻ & PV DCA_K
 d) D⁰ & PV DCA_{D0}
- → θ angle between \vec{P} & decay length

 D^0 decay length (c\tau) $\sim 123~\mu m$

Priyanka Roy Chowdhury

D⁰ invariant mass: D⁰ signal fit: Gaussian; BG fit: exponential

Priyanka Roy Chowdhury

Experimental determination of correlation function

• Applied formula to measure correlation function $C(k^*)$ for $D^0 - (\pi/p/K)$ pairs

$$C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{B(\vec{k}^*)}.$$

where, $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distributions for correlated and uncorrelated pairs $\mathcal{N} \rightarrow$ normalization factor

- Event mixing technique to construct k^* distribution for uncorrelated pairs
- → D⁰ p_T range 1-10 GeV/c in 0-80% centrality range

Priyanka Roy Chowdhury

Experimental challenges

1. Self correlation: Possible correlation between D⁰ candidates and their daughters were removed

Hadron (chosen for pairing with D^0) track id \neq Track id of D^0 daughters (π and K)

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^{*}. This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition for TPC tracks.

Track splitting

More than 51% of max. possible no. of TPC hits

Priyanka Roy Chowdhury

Experimental challenges

3. Track merging:

Merging of tracks inside TPC

- Track merging causes a depletion of pairs at low relative momentum and appears when two tracks are registered as a single one
- The merging effect affects mostly non-identical particle combinations with opposite charges. Due to the magnetic field their curves go in opposite directions and if the angle between tracks is too small, they are treated as a single track
- → $\delta r(i) < mean TPC distance separation <math>\rightarrow$ 'merged' hits
- $\delta r(i)$ distance between TPC hits on two tracks
- Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'

Priyanka Roy Chowdhury

Summary & Future Plans

- First experimental analysis of D⁰-hadron femtoscopy in Au+Au collisions at STAR is ongoing
- Model study (ex. Lednický–Lyuboshitz) is on the plan to extract interaction parameters, like emission source size
- This study can provide additional input on interactions of charm quarks within the QGP medium
- Model calculations needed that include details of charm interactions with the QGP for the interpretation of the results

Back Ups

Analysis cuts

Event cuts

- $|V_z| < 6.0$ cm.
- $|V_z V_z V_{pd}| < 3.0 \text{ cm}.$
- $|V_{x|} > 1.0e-5$ cm.
- $|V_y| > 1.0e-5$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$
- Centrality = 0-80%

Track cuts

- $p_T > 0.5 \text{ GeV/c}$
- |dca_sign| >0.0050cm.
- nHitsFit ≥ 20
- |pseudorapidity| <=1.0

PID cuts for Pions, Kaons & Protons

- |nSigmaPion| < 3.0
- |nSigmaKaon| < 2.0 & |nSigmaProton| < 2.0
- |(1/beta) (1/beta_{Pion})| < 0.03
- |(1/beta) (1/beta_{Kaon})| < 0.03
- |(1/beta) (1/beta_{Proton})| < 0.03

What do we know already about D-hadron femtoscopy?

- First studies of D-hadron interactions in p+p by the ALICE experiment Within sizable uncertainties:
- → D[±]-proton and D[±]- Kaon: results compatible with Coulomb interaction only and with shallow attractive strong interaction

What can we expect in heavy-ion collisions?

→ D⁰-Kaon and D⁰-pion femtoscopic correlation function:

The larger the source size, the smaller the correlation effect

Priyanka Roy Chowdhury