Proton GPDs from lattice QCD with novel methods

Joshua Miller

Temple University

In collaboration with:
S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, X. Gao, A. Metz, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

APS GHP

Minneapolis, Minnesota
4/13/2023

Why GPDs?

Why GPDs?

A wealth of information is included in generalized parton distributions (GPDs)

Why GPDs?

A wealth of information is included in generalized parton distributions (GPDs)

* Understand 3D nucleon structure
* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Information on the hadron's spin

Why GPDs?

A wealth of information is included in generalized parton distributions (GPDs)

* Understand 3D nucleon structure
* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Information on the hadron's spin
* Experimentally, we rely on exclusive processes like deeply virtual

Compton Scattering (DVCS) -ep $\rightarrow e X \quad[\mathrm{X}$. -D. Ji, PRD 55, 7114 (1997)]
$\not *$ Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qui et al., arXiv:2205.07846]

Why GPDs?

A wealth of information is included in generalized parton distributions (GPDs)

* Understand 3D nucleon structure
* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Information on the hadron's spin
* Experimentally, we rely on exclusive processes like deeply virtual

Compton Scattering (DVCS) -ep $\rightarrow e X \quad[\mathrm{X}$. -D. Ji, PRD 55, 7114 (1997)]

* Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qui et al., arXiv:2205.07846]
* GPDs poorly known compared to PDFs:
* DVCS does not give directly x-dependence
* More than one GPDs are involved in each process
* GPDs depend on more than one parameter, and parameterization are no straightforward

Why GPDs?

A wealth of information is included in generalized parton distributions (GPDs)

* Understand 3D nucleon structure
* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Information on the hadron's spin
* Experimentally, we rely on exclusive processes like deeply virtual

Compton Scattering (DVCS) -ep $\rightarrow e X \quad[\mathrm{X}$. -D. Ji, PRD 55, 7114 (1997)]
\star Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qui et al., arXiv:2205.07846]

* GPDs poorly known compared to PDFs:
* DVCS does not give directly x-dependence
* More than one GPDs are involved in each process
* GPDs depend on more than one parameter, and parameterization are no straightforward

Theoretical Setup

* GPDs defined from off-forward matrix elements of non-local operators on the light-cone

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

Theoretical Setup

* GPDs defined from off-forward matrix elements of non-local operators on the light-cone

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parameterization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

Theoretical Setup

* GPDs defined from off-forward matrix elements of non-local operators on the light-cone

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overline{0}_{\perp}}
$$

* Parameterization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

* Possible parameterization in lattice QCD

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Theoretical Setup

* GPDs defined from off-forward matrix elements of non-local operators on the light-cone

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

* Parameterization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

* Possible parameterization in lattice QCD

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \underset{\substack{\text { Nonstantinou \& Panagopoulus (2017]] }}}{\text { No finice mixing on the latice }}
$$

* Calculations typically in the symmetric frame, which requires separate calculations at each $-t$

Theoretical Setup

* GPDs defined from off-forward matrix elements of non-local operators on the light-cone

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

* Parameterization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

* Possible parameterization in lattice QCD

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \underset{\substack{\text { [Constantinou \& Panagopoullos (2017]] }}}{\text { No finite mixing on the latice }}
$$

* Calculations typically in the symmetric frame, which requires separate calculations at each $-t$

A NEW IDEA
 Develop a different parameterization to access GPDs from LQCD

Do this for a broad range of $-t$ and ξ with realistic computational resources

GPDs from Lattice QCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
* LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$

GPDs from Lattice QCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
\& LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$
* GPD access in Lattice QCD:
- Mellin moments (generalized form factors)

$$
\left\langle x^{n-1}\right\rangle=\int_{-1}^{+1} x^{n-1} f(x) d x
$$

- Novel methods (LaMET, pseudo-ITD, and many more)
[Cichy \& Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

GPDs from Lattice QCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
- LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$
* GPD access in Lattice QCD:
- Mellin moments (generalized form factors)

$$
\left\langle x^{n-1}\right\rangle=\int_{-1}^{+1} x^{n-1} f(x) d x
$$

- Novel methods (LaMET, pseudo-ITD, and many more)
[Cichy \& Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]
* Calculation of quasi-GPD in Lattice QCD is very challenging
- Matrix elements of non-local operators (partons spatially separated)
- Hadron states with momentum boost
- renormalization prescriptions have limitations and may bring systematic uncertainties
- introduction of momentum transfer increases noise
\rightarrow A lot of computing time

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here, asymmetric kinematic frame: $\vec{P}_{i}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here, asymmetric kinematic frame: $\quad \overrightarrow{P_{i}}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$
R=\frac{C^{3 p t}\left(t_{s}, t, p_{i}, p_{f}\right)}{C^{2 p t}\left(t_{s}, p_{f}\right)} \sqrt{\frac{C^{2 p t}\left(t_{s}-t, p_{i}\right) C^{2 p t}\left(t, p_{f}\right) C^{2 p t}\left(t_{s}, p_{f}\right)}{C^{2 p t}\left(t_{s}-t, p_{f}\right) C^{2 p t}\left(t, p_{i}\right) C^{2 p t}\left(t_{s}, p_{i}\right)}}
$$

$\langle N(P) \mid N(P)\rangle$

$\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{V}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here, asymmetric kinematic frame: $\quad \overrightarrow{P_{i}}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$
R=\frac{C^{3 p t}\left(t_{s}, t, p_{i}, p_{f}\right)}{C^{2 p t}\left(t_{s}, p_{f}\right)} \sqrt{\frac{C^{2 p t}\left(t_{s}-t, p_{i}\right) C^{2 p t}\left(t, p_{f}\right) C^{2 p t}\left(t_{s}, p_{f}\right)}{C^{2 p t}\left(t_{s}-t, p_{f}\right) C^{2 p t}\left(t, p_{i}\right) C^{2 p t}\left(t_{s}, p_{i}\right)}}
$$

$$
\langle N(P) \mid N(P)\rangle
$$

$$
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} A_{1}+m z^{\mu} A_{2}+\frac{\Delta^{\mu}}{m} A_{3}+i m \sigma^{\mu z} A_{4}+\frac{i \sigma^{\mu \Delta}}{m} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{m} A_{6}+m z^{\mu} i \sigma^{z \Delta} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_{8}\right] u\left(p_{i}, \lambda\right)
$$

Dependent upon 8 linearly-independent Lorentz invariant amplitudes!

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}+\frac{\Delta_{0}}{P_{0}} A_{3}+\frac{m^{2} \Delta_{0}}{2 P_{0} P_{3}} z A_{4}+\frac{\left(\Delta_{0}^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} z A_{6}+\frac{\left(\Delta_{0}^{3}+\Delta_{0}\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)\right)}{2 P_{0} P_{3}} z A_{8}$
Standard γ^{0} definition

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}+\frac{\Delta_{0}}{P_{0}} A_{3}+\frac{m^{2} \Delta_{0}}{2 P_{0} P_{3}} z A_{4}+\frac{\left(\Delta_{0}^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} z A_{6}+\frac{\left(\Delta_{0}^{3}+\Delta_{0}\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)\right)}{2 P_{0} P_{3}} z A_{8}$
Standard γ^{0} definition
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}$
$\mathscr{E}_{0}^{a}\left(A_{i}^{a} ; z\right)=-A_{1}+2 A_{5}+2 P_{3} z A_{6}$

\}

Lorentz invariant definition

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}+\frac{\Delta_{0}}{P_{0}} A_{3}+\frac{m^{2} \Delta_{0}}{2 P_{0} P_{3}} z A_{4}+\frac{\left(\Delta_{0}^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} z A_{6}+\frac{\left(\Delta_{0}^{3}+\Delta_{0}\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)\right)}{2 P_{0} P_{3}} z A_{8}$
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}$
$\mathscr{E}_{0}^{a}\left(A_{i}^{a} ; z\right)=-A_{1}+2 A_{5}+2 P_{3} z A_{6}$

\}
6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}+\frac{\Delta_{0}}{P_{0}} A_{3}+\frac{m^{2} \Delta_{0}}{2 P_{0} P_{3}} z A_{4}+\frac{\left(\Delta_{0}^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} z A_{6}+\frac{\left(\Delta_{0}^{3}+\Delta_{0}\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)\right)}{2 P_{0} P_{3}} z A_{8}$
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}$
$\mathscr{E}_{0}^{a}\left(A_{i}^{a} ; z\right)=-A_{1}+2 A_{5}+2 P_{3} z A_{6}$

\}
6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
7. Fourier-like transform to x-space

Frame Dependence and Calculations

Strategy

3. Disentangle the amplitudes from kinematically independent matrix elements
4. Exploit symmetry properties of A_{i} that lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$
5. Relate A_{i} with quasi H/E-GPDs (definitions not unique)
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}+\frac{\Delta_{0}}{P_{0}} A_{3}+\frac{m^{2} \Delta_{0}}{2 P_{0} P_{3}} z A_{4}+\frac{\left(\Delta_{0}^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} z A_{6}+\frac{\left(\Delta_{0}^{3}+\Delta_{0}\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)\right)}{2 P_{0} P_{3}} z A_{8}$
$\mathscr{H}_{0}^{a}\left(A_{i}^{a} ; z\right)=A_{1}$
$\mathscr{E}_{0}^{a}\left(A_{i}^{a} ; z\right)=-A_{1}+2 A_{5}+2 P_{3} z A_{6}$

\}

Lorentz invariant definition

6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
7. Fourier-like transform to x-space
8. Apply matching formalism

Decomposition

* Spin 1/2 particles:
(4 operators: $\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}$) x (4 parity projectors: unpolarized/polarized proton) $=16$ matrix element
* Extraction of $8 A_{i}$ is successful
* Exploitation of different kinematics and symmetry properties of A_{i} to increase statistics.
E.g., $\quad(\pm \Delta, 0,0),(0, \pm \Delta, 0)$ lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$

Decomposition

* Spin 1/2 particles:
(4 operators: $\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}$) x (4 parity projectors: unpolarized/polarized proton) $=16$ matrix element
* Extraction of $8 A_{i}$ is successful
* Exploitation of different kinematics and symmetry properties of A_{i} to increase statistics.
E.g., $\quad(\pm \Delta, 0,0),(0, \pm \Delta, 0)$ lead to the same $-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}$

Example: Asymmetric Frame

$$
\left(\pm \Delta_{1}, \pm \Delta_{2}, 0\right),\left(\pm \Delta_{2}, \pm \Delta_{1}, 0\right)
$$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=i K\left(\frac{\left(E_{f}+E_{i}\right) P_{3} \Delta_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} \Delta_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) \Delta_{2}}{2 m} z A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} \Delta_{2}}{4 m^{3}} A_{5}-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) \Delta_{2}}{4 m^{3}} z A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) \Delta_{2}}{2 m^{3}} z A 8\right) \\
& \Pi_{0}^{a}\left(\Gamma_{2}\right)=i K\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} \Delta_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} \Delta_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) \Delta_{1}}{2 m} z A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} \Delta_{1}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{4 m^{3}} z A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{2 m^{3}} z A 8\right)
\end{aligned}
$$

* Kinematically equivalent matrix elements can be averaged

Decomposition

Symmetric Frame

$$
\begin{aligned}
& \Pi_{0}^{s}\left(\Gamma_{2}\right)=i K\left(-\frac{E P_{3} \Delta_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} \Delta_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) \Delta_{1}}{2 m^{3}} z A_{6}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{1}\right)=K\left(\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{3}+\frac{\Delta_{1} \Delta_{2}}{8 m} z A_{4}-\frac{\left(P_{3}^{2}+m(E+m)\right) \Delta_{1} \Delta_{2}}{2 m^{3}} z A_{8}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{3}\right)=K \frac{(E+m) \Delta_{2}}{2 m^{2}} A_{5}
\end{aligned}
$$

Decomposition

Symmetric Frame

$$
\begin{aligned}
& \Pi_{0}^{s}\left(\Gamma_{2}\right)=i K\left(-\frac{E P_{3} \Delta_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} \Delta_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) \Delta_{1}}{2 m^{3}} z A_{6}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{1}\right)=K\left(\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{3}+\frac{\Delta_{1} \Delta_{2}}{8 m} z A_{4}-\frac{\left(P_{3}^{2}+m(E+m)\right) \Delta_{1} \Delta_{2}}{2 m^{3}} z A_{8}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{3}\right)=K \frac{(E+m) \Delta_{2}}{2 m^{2}} A_{5}
\end{aligned}
$$

Asymmetric Frame

$\Pi_{0}^{a}\left(\Gamma_{2}\right)=i K\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} \Delta_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} \Delta_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) \Delta_{1}}{2 m} z A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} \Delta_{1}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{4 m^{3}} z A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{2 m^{3}} z A 8\right)$
$\Pi_{1}^{a}\left(\Gamma_{1}\right)=K\left(-\frac{P_{3} \Delta_{1} \Delta_{2}}{8 m^{3}} A_{1}+\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{3}+\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+m\right) \Delta_{1} \Delta_{2}}{4 m^{3}} z A 6-\frac{E_{f}\left(E_{f}+m\right) \Delta_{1} \Delta_{2}}{2 m^{3}} z A_{8}\right)$
$\Pi_{1}^{a}\left(\Gamma_{3}\right)=K\left(\frac{P_{3} \Delta_{2}}{4 m} z A_{4}+\frac{\left(E_{f}+m\right) \Delta_{2}}{2 m^{2}} A_{5}\right)$

Decomposition

Symmetric Frame

$\Pi_{0}^{s}\left(\Gamma_{2}\right)=i K\left(-\frac{E P_{3} \Delta_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} \Delta_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) \Delta_{1}}{2 m^{3}} z A_{6}\right)$
$\Pi_{1}^{s}\left(\Gamma_{1}\right)=K\left(\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{3}+\frac{\Delta_{1} \Delta_{2}}{8 m} z A_{4}-\frac{\left(P_{3}^{2}+m(E+m)\right) \Delta_{1} \Delta_{2}}{2 m^{3}} z A_{8}\right)$
$\Pi_{1}^{s}\left(\Gamma_{3}\right)=K \frac{(E+m) \Delta_{2}}{2 m^{2}} A_{5}$

Asymmetric Frame

$\Pi_{0}^{a}\left(\Gamma_{2}\right)=i K\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} \Delta_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} \Delta_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) \Delta_{1}}{2 m} z A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} \Delta_{1}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{4 m^{3}} z A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) \Delta_{1}}{2 m^{3}} z A 8\right)$
$\Pi_{1}^{a}\left(\Gamma_{1}\right)=K\left(-\frac{P_{3} \Delta_{1} \Delta_{2}}{8 m^{3}} A_{1}+\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{3}+\frac{P_{3} \Delta_{1} \Delta_{2}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+m\right) \Delta_{1} \Delta_{2}}{4 m^{3}} z A 6-\frac{E_{f}\left(E_{f}+m\right) \Delta_{1} \Delta_{2}}{2 m^{3}} z A_{8}\right)$
$\Pi_{1}^{a}\left(\Gamma_{3}\right)=K\left(\frac{P_{3} \Delta_{2}}{4 m} z A_{4}+\frac{\left(E_{f}+m\right) \Delta_{2}}{2 m^{2}} A_{5}\right)$
Π_{μ} and kinematic coefficients depend on the frame, but A_{i} are frame invariant

Setup

Lattice Setup

* Iwasaki gluons $\beta=1.778$
* Lattice spacing $a \approx 0.0934 \mathrm{fm}$
* $32^{3} \times 64 \mathrm{fm}$
$m_{\pi} \approx 260 \mathrm{MeV}$

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	271	8	17344

Lattice Setup

Setup

$* N_{f}=2+1+1$ twisted mass fermions \& clover term (ETMC)

* Iwasaki gluons $\beta=1.778$
* Lattice spacing $a \approx 0.0934 \mathrm{fm}$
* $32^{3} \times 64 \mathrm{fm}$
* $m_{\pi} \approx 260 \mathrm{MeV}$

Symmetric frame calculations are done individually!
Computationally expensive!

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	271	8	17344

Asymmetric frame done in groups of 2 runs! Much faster than symmetric frame!

Lattice Setup

Setup
$* N_{f}=2+1+1$ twisted mass fermions \& clover term (ETMC)
Different calculations

* Iwasaki gluons $\beta=1.778$
* Lattice spacing $a \approx 0.0934 \mathrm{fm}$
* $32^{3} \times 64 \mathrm{fm}$
$m_{\pi} \approx 260 \mathrm{MeV}$

Symmetric frame calculations are done individually!
Computationally expensive!

frame	P_{3} [GeV]	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {sre }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	271	8	17344
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	271	8	17344

Asymmetric frame done in groups of 2 runs! Much faster than symmetric frame!

Various $-t$ values simulated

Matrix Elements

Asymmetric Frame $\quad-t=0.64 G e V^{2}$

Matrix Elements

Asymmetric Frame $\quad-t=0.64 \mathrm{GeV}^{2}$

No symmetry properties $\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)$ in asymmetric frame!

Amplitudes

For $(\Delta, 0,0)$:

Amplitudes

$\operatorname{For}(\Delta, 0,0)$:

$$
\begin{aligned}
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right) K} \Pi_{0}^{a}\left(\Gamma_{0}\right)+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) \Delta K} \Pi_{0}^{a}\left(\Gamma_{2}\right)+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{1}^{a}\left(\Gamma_{2}\right) \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{1}^{a}\left(\Gamma_{0}\right)+\frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{2}^{a}\left(\Gamma_{1}\right)+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{2}^{a}\left(\Gamma_{3}\right)
\end{aligned}
$$

Amplitudes

$\operatorname{For}(\Delta, 0,0)$:

$$
\begin{aligned}
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right) K} \Pi_{0}^{a}\left(\Gamma_{0}\right)+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) \Delta K} \Pi_{0}^{a}\left(\Gamma_{2}\right)+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{1}^{a}\left(\Gamma_{2}\right) \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{1}^{a}\left(\Gamma_{0}\right)+\frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{2}^{a}\left(\Gamma_{1}\right)+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{2}^{a}\left(\Gamma_{3}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
A_{1}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{5}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{5}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
-A_{2}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & -A_{6}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{6}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
-A_{3}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{7}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{7}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
A_{4}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{4}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{8}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{8}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{array}
$$

Amplitudes

For $(\Delta, 0,0)$:

$$
\begin{aligned}
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right) K} \Pi_{0}^{a}\left(\Gamma_{0}\right)+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) \Delta K} \Pi_{0}^{a}\left(\Gamma_{2}\right)+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{1}^{a}\left(\Gamma_{2}\right) \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{1}^{a}\left(\Gamma_{0}\right)+\frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right) K} \Pi_{2}^{a}\left(\Gamma_{1}\right)+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) \Delta K} \Pi_{2}^{a}\left(\Gamma_{3}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
A_{1}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{5}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{5}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
-A_{2}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & -A_{6}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{6}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
-A_{3}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{7}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{7}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
A_{4}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{4}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & A_{8}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{8}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{array}
$$

Symmetry in Amplitudes

Symmetry in Amplitudes

Agreement Between Frames

* A_{1} and A_{5} are the dominant contributions
* Full agreement in two frames for both the real and imaginary parts for A_{1} and A_{5}

Agreement Between Frames

* A_{1} and A_{5} are the dominant contributions
* Full agreement in two frames for both the real and imaginary parts for A_{1} and A_{5}
* Remaining A_{i} are suppressed (at least for this kinematic setup and for $\xi=0$)
* Some A_{i} may be exactly zero for $\xi=0$

Quasi-GPDs

* We build the quasi-GPDs (coordinate space) by mapping with the A_{i}
$\xi=0$

$$
\mathscr{H}\left(A_{i}^{s / a} ; z\right)=A_{1}
$$

$$
\mathscr{E}\left(A_{i}^{s / a} ; z\right)=-A_{1}+2 A_{5}+2 P_{3} z A_{6}
$$

H and E GPDs

* Reconstruction of x-dependence using Backus-Gilbert [Backus, Gilbert, (1968]]
* 1-loop matching (same as PDF for zero skewness)

H and E GPDs

* Reconstruction of X-dependence using Backus-Gilbert [Backus, Gilbert, (1968]]
* 1-loop matching (same as PDF for zero skewness)
[Liu et al., (2019)]

* GPDs decay with increase of momentum transfer
* High values of $-t$ have increased systematic uncertainties

Helicity GPDs

*Similar formalism has been developed for the helicity case

* Two quasi-GPDs: $\tilde{\mathscr{H}}$ and $\tilde{\mathscr{E}}$
* At $\xi=0$, we cannot extract $\tilde{\mathscr{E}}$
* Like the unpolarized case, we exploit asymmetric frame calculation to extract several $-t$

Helicity GPDs

*Similar formalism has been developed for the helicity case

* Two quasi-GPDs: $\tilde{\mathscr{H}}$ and $\tilde{\mathscr{E}}$
* At $\xi=0$, we cannot extract $\tilde{\mathscr{E}}$
* Like the unpolarized case, we exploit asymmetric frame calculation to extract several - t Preliminary

Summary

* New method to parameterize the MEs into Lorentz invariant amplitudes
* Method has great advantages
* Access to a broad range of $-t$ and ξ
* Numerical results demonstrate the validity of the approach
* Future calculations of GPDs will be impactful to the global analysis of experimental data

Summary

* New method to parameterize the MEs into Lorentz invariant amplitudes
* Method has great advantages
* Access to a broad range of $-t$ and ξ
* Numerical results demonstrate the validity of the approach
* Future calculations of GPDs will be impactful to the global analysis of experimental data

Summary

* New method to parameterize the MEs into Lorentz invariant amplitudes
* Method has great advantages
* Access to a broad range of $-t$ and ξ
* Numerical results demonstrate the validity of the approach
* Future calculations of GPDs will be impactful to the global analysis of experimental data

Thank you!

J. Miller acknowledges financial support from the Gordon and Betty Moore Foundation, the American Physical Society to present this work at the GHP 2023 workshop, and the DOE, Grant No. DE-SC0020405.

