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❖ Understand 3D nucleon structure

❖ Reflect spatial distribution of partons in the transverse plane

❖ Contain information on mechanical properties of hadrons

❖ Information on the hadron’s spin

Lattice QCD calculations complement the theoretical and experimental efforts 

❖ GPDs poorly known compared to PDFs:

❖ DVCS does not give directly x-dependence

❖ More than one GPDs are involved in each process

❖ GPDs depend on more than one parameter, and parameterization are no straightforward
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• Phys.Rev.D 106 (2022) 11, 114512 • e-Print: 2209.05373 

A NEW IDEA
Develop a different parameterization to access GPDs from LQCD

Do this for a broad range of  and  with realistic computational resources−t ξ
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https://arxiv.org/abs/2209.05373


GPDs from Lattice QCD
❖ Direct access to partonic distributions impossible in LQCD:


❖ PDFs/GPDs/TMDs are defined on the light cone, that is:   


❖ LQCD is a Euclidean formulation (Wick rotation, ) and light cone:  
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t → iτ τ2 + ⃗r2 = 0
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⟨xn−1⟩ = ∫
+1
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xn−1f(x) dx

[Cichy & Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

❖ Calculation of quasi-GPD in Lattice QCD is very challenging  
- Matrix elements of non-local operators (partons spatially separated) 
- Hadron states with momentum boost 
- renormalization prescriptions have limitations and may bring systematic uncertainties 
- introduction of momentum transfer increases noise 

  A lot of computing time→



Frame Dependence and Calculations
Almost all of the work in the literature uses the symmetric (Breit) frame.

Here, asymmetric kinematic frame:   ,         , ⃗Pi = P3 ̂z − ⃗Δ ⃗Pf = P3 ̂z
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Necessary Steps

⟨N(Pf ) |Ψ̄(z) Γ 𝒲(z,0)Ψ(0) |N(Pi)⟩
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2. Apply a single-state fit (plateau) to get the ground state of the matrix elements, Πa
i

Dependent upon 8 linearly-independent Lorentz invariant amplitudes!

Ai(z ⋅ P, z ⋅ Δ, Δ2, z2) (Based on the idea of: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056)

Fμ(z, P, Δ) = ū(pf , λ′￼)[ Pμ

m
A1 + mzμA2 +

Δμ

m
A3 + imσμzA4 +

iσμΔ

m
A5 +

PμiσzΔ

m
A6 + mzμiσzΔA7 +

ΔμiσzΔ

m
A8] u(pi, λ)

[Bhattacharya et al., arXiv:2209.05373 ]
[Bhattacharya et al., (2022)]
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Decomposition
❖ Spin 1/2 particles:  
 (4 operators: )  x (4 parity projectors: unpolarized/polarized proton) = 16 matrix elementγ0, γ1, γ2, γ3

❖ Extraction of 8  is successful 


❖ Exploitation of different kinematics and symmetry properties of  to increase statistics.  

  E.g.,    lead to the same 

Ai

Ai

(±Δ, 0, 0), (0, ± Δ, 0) −t = ⃗Δ2 − (Ef − Ei)2
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 and kinematic coefficients depend on the frame, but  are frame invariant Πμ Ai

8



Setup
❖  twisted mass fermions & clover term (ETMC)


❖ Iwasaki gluons 


❖ Lattice spacing  fm
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Nf = 2 + 1 + 1

β = 1.778

a ≈ 0.0934

323 × 64

mπ ≈ 260

Lattice Setup
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 done individually! 

Computationally expensive!
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groups of 2 runs! 
Much faster than 
symmetric frame!
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Different calculations

Various  values simulated−t



Matrix Elements
−t = 0.64 GeV2
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Matrix Elements
−t = 0.64 GeV2

No symmetry properties ( ) in asymmetric frame!z ⋅ P, z ⋅ Δ, Δ2, z2
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A1 =
2m2

Ef(Ei + m)K
Πa

0(Γ0) + i
2(Ef − Ei)P3m2

Ef(Ef + m)(Ei + m)ΔK
Πa

0(Γ2) +
2(Ei − Ef )P3m2

Ef(Ef + Ei)(Ef + m)(Ei + m)K
Πa

1(Γ2)

+i
2(Ei − Ef )m2

Ef(Ei + m)ΔK
Πa

1(Γ0) +
(Ei − Ef )P3m2

Ef(Ef + Ei)(Ef + m)(Ei + m)K
Πa

2(Γ1) +
2(Ef − Ei)m2

Ef(Ei + m)ΔK
Πa

2(Γ3)
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A1 A5
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both the real and imaginary parts 
for  and A1 A5
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❖  and  are the dominant 
contributions
A1 A5

❖ Full agreement in two frames for 
both the real and imaginary parts 
for  and A1 A5

❖ Remaining  are suppressed (at 
least for this kinematic setup and 
for )

Ai

ξ = 0

❖ Some  may be exactly zero for Ai
ξ = 0



Quasi-GPDs
❖ We build the quasi-GPDs (coordinate space) by mapping with the 

❖ 

Ai

ξ = 0
ℋ(As/a

i ; z) = A1 ℰ(As/a
i ; z) = − A1 + 2A5 + 2P3zA6
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❖ Reconstruction of x-dependence using Backus-Gilbert


❖ 1-loop matching (same as PDF for zero skewness) [Liu et al., (2019)]

[Backus, Gilbert, (1968)]
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❖ High values of  have increased systematic uncertainties−t
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❖ 1-loop matching (same as PDF for zero skewness) [Liu et al., (2019)]
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Helicity GPDs
❖Similar formalism has been developed for the helicity case

❖ Two quasi-GPDs:  and  ℋ̃ ℰ̃

❖ At , we cannot extract ξ = 0 ℰ̃

❖ Like the unpolarized case, we exploit asymmetric frame calculation to extract several −t
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❖ New method to parameterize the MEs into Lorentz invariant amplitudes
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❖ Access to a broad range of  and −t ξ

❖ Numerical results demonstrate the validity of the approach

❖ Future calculations of GPDs will be impactful to the global analysis of experimental data
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