Polarized and unpolarized gluon distributions in the nucleon from Lattice QCD and machine learning

Raza Sabbir Sufian

APRIL 12-14 Minneapolis, MN

Nonperturbative distributions of quarks & gluons (PDFs)

• "Seeing" internal structure of nucleon without seeing quarks & gluons?

Parton distribution functions are universal properties of a hadron

predict/describe outcome of different experiments (e.g. @LHC, EIC, ...)

governs nonperturbative properties of hadrons

Gluon helicity distribution & origin of proton spin

Gluon helicity distribution is not constrained from experimental data

Jaffe & Manohar [1990]

Noticeable differences in unpolarized gluon PDF between global fits

 \mathcal{X}

- Perturbative QCD based predictions at large x :
 - to which degree they hold?
 - modification due to nonperturbative effects?

Status of unpolarized gluon distribution

Khan, RSS, et al (HadStruc Collab) (PRD 2021)

LQCD formalism for calculating gluon PDFs

$M_{\mu\alpha;\lambda\beta}(z,p) \equiv \langle p | G_{\mu\alpha}(z) W[z,0] G_{\lambda\beta}(0) | p \rangle$ $\Delta M_{\mu\alpha;\lambda\beta}(z,p,s) = \langle p,s | G_{\mu\alpha}(z) W[z,0] \tilde{G}_{\lambda\beta}(0) | p,s \rangle$ X. Ji [PRL 2013]

(i, j = x, y)Balitsky et al [JHEP 2022]

Lattice QCD formalism for calculating gluon PDFs

Lattice details: $L \times T = 32^3 \times 64$ $a \approx 0.094 \,\mathrm{fm}$

Matrix elements are multiplicatively renormalizable

Renormalization: $\Delta \mathfrak{M}(z, p_z) \equiv i \frac{|\Delta \mathcal{M}(z, p_z)|}{|\Delta \mathcal{M}(z, p_z)|} = i \frac{|\Delta \mathcal{M}(z, p_z)|}{|\Delta \mathcal{M}(z, p_z)|}$

Write renormalized LQCD matrix elements in terms of Lorentz invariant variables $\triangleright z^2$ and Ioffe time, $\omega = p_z z$ Braun, et al [PRD 1995] perturbative $\Delta\mathfrak{M}_g(\omega,z^2)$ $\Delta \mathcal{I}_g(\omega, \mu) =$ Saalfeld, et al [EPJ1998] matching

 $m_{\pi} = 358 \,\mathrm{MeV}$

Zhang, et al [PRL 2019], Li, et al [PRL 2019]

$$\frac{l_{00}(z, p_z)/p_z p_0]/Z_{\rm L}(z/a_L)}{\mathcal{M}_{00}(z, p_z = 0)/m_p^2}$$

Radyushkin [PRD 2017] Balitsky, et al [JHEP 2022]

$$\frac{i}{2} \int_{-1}^{1} dx \ e^{-ix\omega} x \Delta g(x,\mu)$$

LQCD matrix elements for polarized gluon distribution

What we want for the light-cone Ioffe-time distribution:

$$\Delta \mathcal{I}_g(\omega,\mu) \equiv i[\Delta \mathcal{M}_{sp}^{(+)}(\omega,\mu) - \omega \Delta \mathcal{M}_{pp}(\omega,\mu)]$$

What we get from the lattice calculation:

$$\Delta \mathfrak{M}(\omega, z^2) = \left[\Delta \mathcal{M}_{sp}^{(+)}(\omega, z^2) - \omega \Delta \mathcal{M}_{pp}(\omega, z^2)\right] - \frac{m_p^2}{p_z^2} \omega \Delta \mathcal{M}_{pp}(\omega, z^2)$$

$$\overset{4.0}{\boxed{1}} \qquad \underbrace{\frac{1}{p = 0.41 \text{ GeV}}_{p = 0.82 \text{ GeV}}}_{p = 0.82 \text{ GeV}} \leftarrow m_p^2/p^2 \sim 7.3$$

$$\frac{10}{10}$$

Correction through fits using moments $> \Delta \mathcal{M}_{sp}^{(+)} : \text{odd in } \omega$ $> \Delta \mathcal{M}_{pp} : \text{even in } \omega$ $\Delta \mathfrak{M}(\omega) = \sum_{i=0}^{\infty}$

Truncation dependent & limited by lattice data

Isolating gluon helicity loffe-time distribution from LQCD data

$$\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2i+1)!} a_{i} \omega^{2i+1} + \omega \frac{m_{p}^{2}}{p_{z}^{2}} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2j)!} b_{j} \omega^{2j}$$

Isolating gluon helicity loffe-time distribution from LQCD data

Correction by subtracting zero momentum matrix elements $\Delta M_{0i;0i}(z,p) + \Delta M_{ij;ij}(z,p) = -2p_z p_0$

Proposed subtraction :

 $\Delta \mathfrak{M}_{g,\,\mathrm{sub}}(\omega, z^2) = \Delta \mathcal{M}_{sp}^{(+)}(\omega, z^2) - \omega \Delta \mathcal{M}_{pp}$

$$\Delta \mathcal{M}_{sp}^{(+)}(\omega, z^2) + 2p_0^3 z \Delta \mathcal{M}_{pp}(\omega, z^2)$$

non-vanishing at $p_z = 0$

$$p(\omega, z^2) - \omega \frac{m_p^2}{p_z^2} [\Delta \mathcal{M}_{pp}(\omega, z^2) - \Delta \mathcal{M}_{pp}(\omega = 0, z^2)]$$

RSS, Khan, Karthik, et al (HadStruc Collaboration) [PRD 2022]

New idea needed for a model-independent determination of loffe-time distribution

Lattice discrete momenta are related by $p_n = 2\pi i$

Isolate momentum-independent contamination term:

$$p_k^2 \Delta \mathfrak{M}(\omega) \big|_{p_k} = p_k^2 [\Delta \mathcal{M}_{sp}^{(+)}(\omega) - \omega \Delta \mathcal{M}_{pp}(\omega)] - m_p^2 \omega \Delta \mathcal{M}_{pp}(\omega)$$

Two different p data sets are related by

$$\Delta \mathfrak{M}_{g}(\omega) \equiv \Delta \mathcal{M}_{sp}^{(+)}(\omega) - \omega \Delta \mathcal{M}_{pp}(\omega) = \frac{r^{2} \Delta \mathfrak{M}(\omega) \big|_{p_{k}} - \Delta \mathfrak{M}(\omega) \big|_{p_{l}}}{r^{2} - 1} \quad \overline{r = k/l}$$

Main regulator for the neural network

Eliminate the contamination term (connect two data sets) using neural network analysis

Khan, Liu, RSS [arXiv: 2211.15587]

Isolating gluon helicity loffe-time distribution using ML

Simultaneous fit to $\Delta \mathfrak{M}(\omega, z^2)$ and $\Delta \mathfrak{M}_{q, \text{sub}}(\omega, z^2)$

Comparison with global fits

Ruling out negative gluon helicity PDF in moderate to large x-region

Zhou. et al (JAM Collab) [PRD 2022]

A big challenge: how to extract PDF from LQCD data

Consider case for unpolaorized gluon PDF

(PRD 2021)

Results can be very different from lattice data sets that appear similar

Different ML methods being implemented for extrapolations of unpolarized gluon data

Extraction of PDF from LQCD data

Avoid fitting lattice data with limited and biased functional forms [not the case for global fits (e.g. CTEQ and others) with ample experimental data sets]

$$x\Delta g(x,\mu) = \frac{2}{\pi} \int_0^\infty$$

Accuracy depends on maximum ω

 $d\omega \sin(x\omega) \Delta \mathcal{I}_q(\omega,\mu)$

Khan, Liu, RSS [arXiv: 2211.15587]

14

With increased precision, LQCD can constrain unpolarized gluon distribution in the moderate-to-large *x*-region

LQCD tends to rule out negative gluon polarization in the nucleon

LQCD

Physics informed machine learning methods can be useful to predict lattice data outside accessible range (future applications to expose higher twist effects)

Summary & Outlook

Gluon contribution to proton spin & x-dependent helicity distribution from

Thank you!

15