Pion and kaon form factors from lattice QCD

Joseph Delmar Temple University

Collaborators (ETMC): C. Alexandrou, S. Bacchio, I. Cloët, M. Constantinou, G. Koutsou

APS GHP April 14, 2023

Motivation

- Understanding structure of pion and kaon important for describing QCD dynamics ullet
- Useful in studying SU(3) symmetry breaking ullet
- Pion and kaon less studied than proton lacksquare
- Most experimental, theoretical, and lattice studies on pion form factor
- Important to understand pion and kaon from first principles

Mellin moments $\langle x \rangle$ and $\langle x^2 \rangle$ for the pion and kaon from lattice QCD

Constantia Alexandrou,^{1,2} Simone Bacchio,^{1,2} Ian Cloët,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,^{1,2} Giannis Koutsou,² and Colin Lauer^{3,4}

PHYSICAL REVIEW D 104, 054504 (2021)

Pion and kaon $\langle x^3 \rangle$ from lattice QCD and PDF reconstruction from Mellin moments

Constantia Alexandrou,^{1,2} Simone Bacchio,² Ian Cloët,³ Martha Constantinou⁰,⁴ Kyriakos Hadjiyiannakou,^{1,2} Giannis Koutsou,² and Colin Lauer^{3,4}

(ETM Collaboration)

PHYSICAL REVIEW D 103, 014508 (2021)

(ETM Collaboration)

PHYSICAL REVIEW D 105, 054502 (2022)

Scalar, vector, and tensor form factors for the pion and kaon from lattice QCD

Constantia Alexandrou,^{1,2} Simone Bacchio,² Ian Cloët,³ Martha Constantinou⁰,⁴ Joseph Delmar,⁴ Kyriakos Hadjiyiannakou,^{1,2} Giannis Koutsou,² Colin Lauer^{10,4} and Alejandro Vaguero¹⁰⁵

(ETM Collaboration)

Theoretical Setup

Form factors obtained from matrix elements of ultra-local operators ullet

$$\mathcal{O}_{S}^{f} = \bar{\psi}\hat{1}\psi \quad \mathcal{O}_{V}^{f} = \bar{\psi}\gamma^{\mu}\psi$$

Matrix elements decompose to usual form factors ullet

$$\langle M(p') | \mathcal{O}_V^f | M(p) \rangle = -i \frac{2P^{\mu}}{\sqrt{4E(p)E(p')}} H$$

$$\langle M(p') \mid \mathcal{O}_{S}^{f} \mid M(p) \rangle = \frac{1}{\sqrt{4E(p)E(p')}} F_{S}^{M,f}$$

$$\langle M(p') \, | \, \mathcal{O}_T^f \, | \, M(p) \rangle = i \frac{P^\mu Q^\nu - P^\nu Q^\mu}{m_M \sqrt{4E(p)E(p')}}$$

- Two methods to extract ground-state contribution ullet
 - fit plateau region to a constant value \bullet
 - perform a two-state fit on three-point function •
- Form factors are frame independent
- Non-perturbative renormalization (MS at 2 GeV)

 $\mathcal{O}_T^f = \bar{\psi} \sigma^{\mu\nu} \psi$

- $F_V^{M,f}$

 $-F_T^{M,f}$

Theoretical Setup

Form factors obtained from matrix elements of ultra-local operators •

$$\mathcal{O}_{S}^{f} = \bar{\psi}\hat{1}\psi \quad \mathcal{O}_{V}^{f} = \bar{\psi}\gamma^{\mu}\psi$$

Matrix elements decompose to usual form factors ullet

$$\langle M(p') | \mathcal{O}_V^f | M(p) \rangle = -i \frac{2P^{\mu}}{\sqrt{4E(p)E(p')}} H$$

$$\langle M(p') \mid \mathcal{O}_{S}^{f} \mid M(p) \rangle = \frac{1}{\sqrt{4E(p)E(p')}} F_{S}^{M,f}$$

$$\langle M(p') \mid \mathcal{O}_T^f \mid M(p) \rangle = i \frac{P^{\mu} Q^{\nu} - P^{\nu} Q^{\mu}}{m_M \sqrt{4E(p)E(p')}} F_T^{M,f}$$

- Two methods to extract ground-state contribution ullet
 - fit plateau region to a constant value \bullet
 - perform a two-state fit on three-point function •
- Form factors are frame independent
- Non-perturbative renormalization (\overline{MS} at 2 GeV)

 $\mathcal{O}_T^f = \bar{\psi} \sigma^{\mu\nu} \psi$

 $F_V^{M,f}$

 $F_T(0)$ cannot be accessed directly

Lattice Details

•

Ensemble	β	$a({ m fm})$	$L^3 \times T$	N_{f}	$m_{\pi}({ m MeV})$	$L({ m fm})$
cA211.30.32	1.726	0.094	$32^3 \times 64$	2 + 1 + 1	265	3.0
cB211.25.48	1.778	0.079	$48^3 \times 96$	2 + 1 + 1	250	3.79

- Boosted frame gives access to a denser range of -t $-t = Q_{boosted}^2 = \vec{q}^2 - (E(p') - E(p))^2$
- Kinematic frame: $\vec{p}' = \frac{2\pi}{L}(\pm 1, \pm 1, \pm 1), \quad \vec{p} = \vec{p}' \vec{q}$ (matrix element for all values of \vec{q} are obtained at once (sequential method)) \mathcal{T}_{π}

$$\overrightarrow{q} = \frac{2\pi}{L} (\pm n_x, \pm n_y, \pm n_z) \quad n_x, n_y, n_z \in [0,8]$$

Ensemble	Frame	$\vec{p}(2\pi/L)$	t_s/a	$t_{s}({ m fm})$	confs	src pos.	Total
cA211.30.32	R	(0,0,0)	12, 14, 16, 18, 20, 24	1.13, 1.32, 1.50, 1.69, 1.88, 2.256	122	16	$1,\!952$
cA211.30.32	В	$(\pm 1, \pm 1, \pm 1)$	12, 14, 16, 18	1.13, 1.32, 1.50, 1.69	122	136	132,736
cB211.25.48	В	$(\pm 1, \pm 1, \pm 1)$	14,16,18,20	1.11, 1.26, 1.42, 1.58	45	6	$2,\!160$

Two ensembles of twisted-clover fermions and Iwasaki improved gluons [C. Alexandrou et al., PRD 104, 074520 (2021)]

Parameters

Statistics

Pion Form Factors

- Increase of statistical error is not linear with \vec{q} $(-t = \vec{q}^2 (E(p') E(p))^2)$ ullet \rightarrow a careful analysis required to select data points with controlled uncertainties
- ulletfor scalar

Excited state effects suppressed ~0.5 GeV² for tensor and ~1.0 GeV²

Pion Form Factors

- Increase of statistical error is not linear with \vec{q} $(-t = \vec{q}^2 (E(p') E(p))^2)$ ullet \rightarrow a careful analysis required to select data points with controlled uncertainties
- ulletfor scalar

Excited state effects suppressed ~0.5 GeV² for tensor and ~1.0 GeV²

Kaon Form Factors

- Outliers in small t_s •
- Excited-state effects primarily in scalar and tensor ullet
- Good signal up to about 3.0 GeV² ullet

Kaon Form Factors

- Discretization effects apparent in scalar ullet
- Good signal up to about 1.75 GeV² for new ulletensemble

- Outliers in small t_{s} •
- Excited-state effects primarily in scalar and tensor ullet
- Good signal up to about 3.0 GeV²

Parameterization

- ulletMeson Dominance Model (VMD)

$$F_{\Gamma}(Q^2) = \frac{F_{\Gamma}(0)}{1 + \frac{Q^2}{M_{\Gamma}^2}}$$

Radius defined as ullet

- Examined several values of -t included in fit (~0.5 GeV², ~1 GeV², ...) ullet
- A-ensemble results

 $\langle r^2 \rangle_s^{\pi} = 0.280(28) \, \text{fm} \quad \langle r^2 \rangle_V^{\pi} = 0.317(22) \, \text{fm} \quad \langle r^2 \rangle_T^{\pi} = 0.360(41) \, \text{fm} \quad \langle r^2 \rangle_S^{K^u} = 0.138(3) \, \text{fm} \quad \langle r^2 \rangle_S^{K^s} = 0.0982(19) \, \text{fm} \quad \langle r^2 \rangle_V^{K} = 0.309(3) \, \text{fm} \quad \langle r^2 \rangle_T^{K^u} = 0.445(5) \, \text{fm} \quad \langle r^2 \rangle_T^{K^s} = 0.279(3) \, \text{fm}$

• B-ensemble results (preliminary)

 $\langle r^2 \rangle_s^{\pi} = 0.178(31) \, \text{fm} \quad \langle r^2 \rangle_V^{\pi} = 0.323(17) \, \text{fm} \quad \langle r^2 \rangle_T^{\pi} = 0.453(38) \, \text{fm} \quad \langle r^2 \rangle_S^{K^u} = 0.140(10) \, \text{fm} \quad \langle r^2 \rangle_S^{K^s} = 0.0896(71) \, \text{fm} \quad \langle r^2 \rangle_V^{K} = 0.254(10) \, \text{fm} \quad \langle r^2 \rangle_T^{K^u} = 0.411(11) \, \text{fm} \quad \langle r^2 \rangle_T^{K^s} = 0.257(7) \, \text{fm}$

• Form factors can be used to extract important physical quantities, most notably the radii We parameterize the -t dependence using the monopole Ansatz depicted by the Vector

$$\frac{\partial F_{\Gamma}(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0} = \frac{6}{M_{\Gamma}^2}$$

- Form factors can be used to extract important physical quantities, m
- We parameterize the -t dependence using the monopole Ansatz dep ulletMeson Dominance Model (VMD)

$$F_{\Gamma}(Q^2) = \frac{F_{\Gamma}(0)}{1 + \frac{Q^2}{M_{\Gamma}^2}}$$

Radius defined as ullet

- Examined several values of -t included in fit (~0.5 GeV², ~1 GeV², ...)
- A-ensemble results •

 $\langle r^2 \rangle_s^{\pi} = 0.280(28) \, \text{fm} \quad \langle r^2 \rangle_V^{\pi} = 0.317(22) \, \text{fm} \quad \langle r^2 \rangle_T^{\pi} = 0.360(41) \, \text{fm} \quad \langle r^2 \rangle_S^{K^u} = 0.138(3) \, \text{fm} \quad \langle r^2 \rangle_S^{K^s} = 0.0982(19) \, \text{fm} \quad \langle r^2 \rangle_V^{K} = 0.309(3) \, \text{fm} \quad \langle r^2 \rangle_T^{K^u} = 0.445(5) \, \text{fm} \quad \langle r^2 \rangle_T^{K^s} = 0.279(3) \, \text{fm}$

• B-ensemble results (preliminary)

 $\langle r^2 \rangle_s^{\pi} = 0.178(31) \, \text{fm} \quad \langle r^2 \rangle_V^{\pi} = 0.323(17) \, \text{fm} \quad \langle r^2 \rangle_T^{\pi} = 0.453(38) \, \text{fm} \quad \langle r^2 \rangle_S^{K^u} = 0.140(10) \, \text{fm} \quad \langle r^2 \rangle_S^{K^s} = 0.0896(71) \, \text{fm} \quad \langle r^2 \rangle_V^{K} = 0.254(10) \, \text{fm} \quad \langle r^2 \rangle_T^{K^u} = 0.411(11) \, \text{fm} \quad \langle r^2 \rangle_T^{K^s} = 0.257(7) \, \text{fm}$

Tensor Anomalous Magnetic Moment κ_T

- $F_{\Gamma}(Q^2) = \frac{F_{\Gamma}(0)}{1 + \frac{Q^2}{M^2}}$

• $\kappa_T = F_T(0)$ must be extracted from parameterized lattice data

• Ratio of F_T/F_V expected to be nearly constant due to elastic unitarity relation (below 1 GeV²) [M. Hoferichter et al., PRL122, 122001 (2019)]

• Pion data generally stable (smaller slope than FFs)

Tensor Anomalous Magnetic Moment K_T

Tensor Anomalous Magnetic Moment K_T

SU(3) Flavor Symmetry Breaking

- Ratios of fitted data
- Up quark equivalent between mesons
- SU(3) breaking effects up to 20% between up and strange
- Similar picture for scalar and tensor

SU(3) Flavor Symmetry Breaking

- Ratios of fitted data ullet
- Up quark equivalent between mesons ullet
- SU(3) breaking effects up to 20% between up and strange ullet
- Similar picture for scalar and tensor •

- Errors more significant than other ensemble (most likely due to statistics)
- Insignificant effects from t_s choice

- Vector and tensor form factors can be used to probe transverse spin structure
- Form factors Fourier transformed into impact parameter-space using continuum parametrization
- Density of transversely polarized quarks defined as

$$\rho(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[\frac{M_V^2 F_V(0)}{2\pi} K_0 \left(M_V \sqrt{b_{\perp}^2} \right) + \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m} \frac{M_T^3 F_T(0)}{4\pi \sqrt{b_{\perp}^2}} K_{-1} \left(M_T \sqrt{b_{\perp}^2} \right) \right]$$

- Vector and tensor form factors can be used to probe transverse spin structure
- Form factors Fourier transformed into impact parameter-space using continuum parametrization
- Density of transversely polarized quarks defined as

- Unpolarized plot symmetric in b_x and b_y
- Polarized plot asymmetric in b_y (peak around 0.07 fm)

- Vector and tensor form factors can be used to probe transverse spin structure
- Form factors Fourier transformed into impact parameter-space using continuum parametrization
- Density of transversely polarized quarks defined as

$$\rho(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[\frac{M_V^2 F_V(0)}{2\pi} K_0 \left(M_V \sqrt{b_{\perp}^2} \right) + \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m} \frac{M_T^3 F_T(0)}{4\pi \sqrt{b_{\perp}^2}} K_{-1} \left(M_T \sqrt{b_{\perp}^2} \right) \right]$$

- Vector and tensor form factors can be used to probe transverse spin structure
- Form factors Fourier transformed into impact parameter-space using continuum parametrization
- Density of transversely polarized quarks defined as

$$\rho(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[\frac{M_V^2 F_V(0)}{2\pi} K_0 \left(M_V \sqrt{b_{\perp}^2} \right) + \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m} \frac{M_T^3 F_T(0)}{4\pi \sqrt{b_{\perp}^2}} K_{-1} \left(M_T \sqrt{b_{\perp}^2} \right) \right]$$

- Density plots show distortion for polarized quarks
- No qualitative difference between up and strange quark

olarized quarks up and strange

Conclusions

- Additional ensemble allows us to study discretization effects
- Finite-*a* effects more prominent in scalar form factor
- Role of up quark similar in pion and kaon
- SU(3) flavor symmetry breaking of about 20% observed in up quark contribution of kaon compared to strange quark
- Boosted frame useful to obtain form factors for dense range of -t

Conclusions

- Additional ensemble allows us to study discretization effects
- Finite-*a* effects more prominent in scalar form factor
- Role of up quark similar in pion and kaon
- SU(3) flavor symmetry breaking of about 20% observed in up quark contribution of kaon compared to strange quark
- Boosted frame useful to obtain form factors for dense range of -t

Future Work

- Kinematic setup designed to access generalized form factors up to 3-derivative operator
- Higher statistics and study of systematic uncertainties required for new ensemble
- Extension of analysis to $\langle x^n \rangle$ and generalized form factors
- Addition of two ensembles with finer lattice spacing for continuum limit

Acknowledgements

- under Grant No. DE-SC0020405
- This work used resources provided by ACCESS (Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support, formerly XSEDE) funded by the National Science Foundation (NSF) through award ACI-1540931

• Financial support provided by Temple University Fellowship and U.S. Department of Energy Early Career Award

• Attendance support provided by The Gordon and Betty Moore Foundation and the American Physical Society

