

A FAIR Phase-0 experiment to determine the π^0 electromagnetic transition form factor at MAMI

N. Baldicchi, L. Capozza, R. Gowdru, S. Katilmis, D. Liu, F. Maas, J. Martínez, **O. Noll**, D. Rodríguez, C. Rosner, P. Schöner, S. Wolff

Helmholtz Institute Mainz

–10th workshop of the APS Topical Group on Hadronic Physics– Minneapolis, Minnesota 14.04.2023

Bundesministerium für Bildung

^{und Forschung} Work supported by the Bundesministerium für Bildung und Forschung, through the grant 05P12UMFP9

EΛ

- 2. Realisation of the Experiment
- 3. Test Measurements and Simulations
- 4. Ongoing Preparations
- 5. Summary and Time Plan

FAIR, PANDA and FAIR Phase-0

- Facility for Antiproton and Ion Research (FAIR)
- antiProton ANnihilation at DArmstadt (PANDA)
 - **1.5 GeV/c 15 GeV/c** ($\Delta p/p \sim 10^{-4}$)
 - Fixed target experiment
 - $2 \cdot 10^7 \, \bar{p}p$ annihilations/second
 - Excellent particle identification
 - Radiation tolerance of the materials

1/18

A FAIR Phase-0 Experiment at the Mainz Microtron – In a Nutshell

- FAIR Phase-0: FAIR detectors in stand-alone experiments
- PANDA backward calorimeter is completely developed
- Measurement of the **double virtual** pion transition form factor (TFF) $F_{\pi^0\gamma*\gamma*}$ for spacelike momenta
- Primakoff electroproduction
- A1 experimental hall of Mainz Microtron
- Electron beam on highly charged target

Measurement of the Electromagnetic Transition Form Factor of the π^0 in the Space-Like Region via Primakoff Electroproduction. Letter of Intent, 2020

double virtuality

3/18

Fred Jegerlehner. Variations on Photon Vacuum Polarization. EPJ Web Conf., 218:01003, 2019

Data on π^0 Transition Form Factor (TFF)

Time-like

- Dalitz decay $\pi^0 \rightarrow \gamma^* \gamma$
- Precise data from A2@MAMI and NA62
- Down to very low (single) virtuality
- Extracting of π^0 TFF slope

Space-like

- e⁺e⁻colliders
- All measurements singularly virtual $\gamma^*\gamma
 ightarrow \pi^0$
 - Older data from CLEO and CELLO
 - Down to 0.6 GeV²
 - Newer data from BABAR and Belle
 - Down to 4.0 GeV²
 - Preliminary precise data from BESIII
 - Down to 0.3 GeV²
 - Planned measured from KLOE-2
 - Down to 0.01 GeV²
- Missing: $\gamma^* \gamma^* \to \pi^0$

Phys. Rept. 887 (2020) 1-166

4/18

Data-Driven Approach for HLbL Contribution to $g_{\mu}-2$

• Integral over the meson transition form factor $F_{PS\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ with space-like photon virtualities:

Model dependence

Oliver Noll

A: Vector Meson Dominance (VMD) Phys. Rev. D 57 (1998) 465 B: VMD with constraints from operator product expansion Phys. Rev. D 70 (2004) 113006 C: Rational approximants Phys. Rev. D 95 (2017) 054026

5/18

EMP

The Primakoff π^0 Electroproduction

- Coherent π^0 electroproduction on nuclei
 - $e^- + A(Z,N) \rightarrow e^- + \pi^0 + A(Z,N)$
- Primakoff contribution sensitive to TFF
- Suppressed by $\alpha_{\rm e.m.}$
- But enhanced at low t by $t^{-1} = 1/q_2^2$
- t is finite \rightarrow double virtuality
- Proportional to $Z^2 \rightarrow \text{high } Z$ target
 - ¹⁸¹₇₃Ta target
- Strong interference → hadronic production to be calculated for our kinematics
 - G. Faeldt, Nucl. Phys. B 43 (1972) 591
 - S. Gevorkyan et al., Phys. Rev. C80 (2009) 055201
- Model dependence to be estimated
- Background process : incoherent π^0 production
 - $e^- + A(Z, N) \rightarrow e^- + \pi^0 + X$
 - S. Gevorkyan et al., Phys. Part. Nucl. Lett. 9 (2012) 18

6/18

The Primakoff π^0 Electroproduction - Cross Section Estimation

Oliver Noll

Beam energy: 1.5 GeV ¹⁸¹73Ta target

7/18

 Electron scattering angle: 6° to 17°

EMP

Experiment Requirements

- Need to detect both e^- and π^0 in coincidence (exclusive reaction)
- Electromagnetic calorimeter (EMC) is the proper device
 - $\pi^0 \rightarrow \gamma \gamma$
- Need to measure at small $t(q_2)$: angle btw. pion and mom. transfer

- High pion energy and small $\Theta_{\pi q} \rightarrow EMC$ at forward angle
- Small $Q^2 \rightarrow$ small electron scattering angle $\rightarrow e^-$ also in EMC acceptance
- Needed t resolution $\sim 10^{-4} \text{ GeV}^2$
 - Relative energy resolution \sim some %
 - $\Theta_{\pi q}$ angle resolution ~ 0.4° \rightarrow position resolution ~ 4 mm

8/18

The MAMI Electron Scattering Facility – A1 Hall

CW electron beam

Oliver Noll

Beam energies up to 1.5 GeV

- 3 high-resolution magnetic spectrometers
 - $\delta p/p \cong 10^{-4}, \delta \Theta < 3 \text{ mrad}$

9/18

- Wide angular range (but $\Theta_e \ge 15^\circ$)
- Limited acceptance

EM

• Only charged particles

- Ring-shaped EMC around exit beam pipe
- Distance to target \sim 1.2 m
- Plastic scintillator for separating e^- and γ s (or a tracker? \rightarrow under study)
- Magnetic spectrometer for dedicated alignment measurements

10/18

PWO Calorimeter

Mounting Plate

Vacuum Insulation Panels

- PANDA backward calorimeter (FAIR Phase-0)
- Substantial adaptation for this experiment
- 640 PbWO4 crystals
- Inner/outer diameter: 25 cm/75 cm
- RD finished, under construction
- Tested several times with beam at MAMI

11/18

Beam Test at A1

Oliver Noll

Energy Spectra

Total Rate at small Angles

EM

4x4 crystal prototype

12/18

- 3 test beams since 2018
- Beam energy: 1.5 GeV and 855 MeV
- Beam current up to 200 nA
- Targets: C, Ta, polyethylene
- Using 1 and 2 prototypes (coincidence measurement)

3500

3000

2500

2000

1500

1000

500

3500

3000

2500

2000

1500

1000

• Luminosity of at least 5.5 $\mu b^{-1} s^{-1}$ feasible!

Reconstruction Efficiency [%]

Simulation Studies

- GEANT4 simulation with detailed geometry
- Relevant geometry included
- π^0 acceptance studies
- Radiation studies
- Physics event generator
- *e*⁻ detector studies

Sensitivity to Primakoff Amplitude

- $d\sigma$: tot. Cross section (coh. + incoh.)
- $d\sigma_0$: same without Primakoff contr.
- Target: ¹⁸¹₇₃Ta
- Beam energy: 1.5 GeV
- Effective cross section:
 2.951 nb to 0.127 nb
- Luminosity: 5.5 $\mu b^{-1} s^{-1}$ (100 nA)
- Angle range (e^- and $\gamma\gamma$): 5° to 15°
- π^0 detector acceptance included
- Error bars (stat. only): 1000 h, 500 h

14/18

FAIR Phase-0 Detector Status

- 578/640 crystals wrapped
- 32/32 full equipped submodules are built
- 32/32 full equipped submodules succeeded pre-test
- Pre-calibration of submodules is ongoing

15/18

FAIR Phase-0 Detector Status

16/18

EM

- Mounting plate
- Cooling (EMC operates at 25 C°)
- Detector mounting structure

2023

Summary and Possible Time Plan

- FAIR Phase-0: FAIR detectors in stand-alone experiments
- Utilising PANDA backward calorimeter
- Measurement of the **double virtual** pion **transition form factor** (TFF) $F_{\pi^0 \gamma * \gamma *}$ for **spacelike momenta** $e^ e^-$
- Primakoff electroproduction
- A1 experimental hall of Mainz Microtron
- Electron beam on highly charged target
- Test Measurements and Simulations
- Detector construction ongoing

Complete detector
Repeat beam test with 2 prototypes
Hall installation 2024

Commissioning with beam
Pilot experiment ~ 100 h
First analysis
Possible improvements

2025 •Con •500

•Complete run •500 h to 1000 h

18/18

Calibration of Detector Submodules

- Master Thesis finished (Samet Katilmis)
- Calibration consists of
 - 1. Calibration of high voltage distribution boards
 - 2. In-situ temperature sensor calibration
 - 3. In-situ APD gain determination (crosscheck)
 - 4. Energy calibration utilising cosmics
- Full automatised setup
- Three submodules per cycle
- 72 h per cycle
- 48 submodules (32 full, 16 half)
- ~2 months for the whole calibration

Calibration of Detector Modules for the PANDA Backward Electromagnetic Calorimeter Master Thesis, Samet Katilmis, March 2023

Bird's eye view of a drawer with a full equipped submodule

Calibration of Detector Submodules

Oliver Noll

Gain curve of APD(25) APDID(1314014540)

EN

Output of calibration:

- 1. Data sheet for every subunit
- 2. Data base entries for all necessary parameters

Calibration of Detector Modules for the PANDA Backward Electromagnetic Calorimeter Master Thesis, Samet Katilmis, March 2023

Detector

Digital Pulse Identification and Parameter Extraction on FPGA

-50

-200

-250

-300

-350<u></u>-

Amplitude -150

.

Transmission

rising

500

Cluster

Trigger

1000

Identification

Amplification

Digital Pulse Shaping

Time

ΕM

Oliver Noll EM Time Sorted Hit Packaging on FPGA 80 MHz 80 MHz - 125 MHz Dual Clock FIFO, Depth = 1024 I<Header> Size **CH00** I <Raw Time> Package I <Num Hits> N CH01 1.CH,FINETIME,AMP Builder FIFO 2.CH,FINETIME,AMP Dynamic CH02 erializer Stream ... Package N.CH, FINETIME, AMP Down Š Hit CH31 Raw Time: $[0,2^{34}-1] \cdot 12.5 ns$ Fine Time: $[0,2^6-1] \cdot \frac{12.5 \, ns}{\epsilon}$ **Bookkeeper** 12.5 ns

Detector Amplification Transmission Cluster Trigger ADC FPGA Data Compute Nodes

Time Sorted Hit Packaging on FPGA – Bookkeeper

Oliver Noll

Data Concentrator TRB3 SC (GSI)

- Readout trigger from data concentrator (~ 200 ns)
- DSP on FPGA ~ $O(\mu s)$
- Configurable delay between trigger readout column
- Configurable readout window
- Also freestream ready (triggerless)

EM

FAIR Phase-0 Data Acquisition Benchmarks

- 640 Crystals
- 1280 APDs

- 40 SADCs
- 2560 Channels

- Data Concentrator
 - Clock
 - Trigger

• Data Throughput

EΜ

- Exclusive event rate *O*(mHz)
- Event hit rate \sim 200 kHz/Channel
- Free streaming bandwidth *O*(40 Gbit/s)
- Trigger mode bandwidth *O*(2 Gbit/s)

FAIR Phase-0 Detector Component Status - 1/2-Submodules

- First half submodule is built 1/16
- Aluminum dummies

EM

The Anomalous Magnetic Moment of the Muon

Dirac Theory:

Oliver Noll

EM

Messung:

B

$$\omega_L = \frac{g}{2} \cdot \frac{eB}{m} \qquad \omega_c = \frac{eB}{m}$$

 $a_{\mu}^{\text{Exp.}} = 0.00116592089(63)$
BNL (E821) 2006

$$\begin{array}{c} a_{\mu}^{\rm SM} = 0.00116591782(43) \\ a_{\mu}^{\rm Exp.} = 0.00116592089(63) \end{array} \right\} 4\sigma$$