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Quantum Computations for Field Theory Models in

Hadron Physics and GPDs

e Abstract

Testin§ detailed predictions of QCD and searching for phenomena Beyond the Standard
Model at the LHC and the EIC requires knowing spin dependent Parton Distribution
Functions for guarks and gluons. For some observables Generalized or Transverse
Momentum pdf’s are needed. Calculating these distributions from QCD, ab initio, is
prohibitively resource intensive and depends on non-perturbative techniques. Simulation
on a quantum computer of quantum field theories offers a new way to investigate
properties of the fundamental constituents of matter. We develop quantum simulation
algorithms based on the light-front formulation of relativistic field theories, beginning
with Yukawa theories in 1+1D and 2+1D. We compute pdf’s and GPD’s for a model of pion-
like mesons and begin quark-diquark model of baryons.

Phys.Rev.A 103 (2021) 6, 062601;

Entropy 23 (2021) 5, 597;

Phys.Rev.A 105 (2022) 3, 032418
arXiv:2211.07826 hep-th. Gustin & Goldstein
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Key ideas

* Light cone quantization or infinite momentum frame —
see Pauli and Brodsky for implementation

* “In the Fock-space representation, the light-cone Hamiltonian becomes block di-
agonal, characterized by a new dynamic quantum number, the harmonic resolution K.
K is closely related to the light-cone momentum, when the theory is defined with
periodic boundary conditions in the light cone spatial coordinates. For each fixed
value of IC, the Fock-space dimension in the block is finite, and finite matrices can be
diagonalized numerically with unlimited precision. Eventually, the resulting field-
theoretical many-body problem in one space and one time dimension becomes much
simpler than its nonrelativistic and noncovariant approximation.”

* This K dependence corresponds to discrete quantization — momenta in a box DLCQ

* Then each discrete Fock state has qubit correspondence



Goals of Particle and Nuclear Physics

What can we know about the sfrucfure of hadrons, especially protons and
neutrons?

What can we know about the origin of Mass & Spin?
QCD is the complete theory of the strong interactions among quarks and gluons
Strong coupling, non-Abelian gauge theory, non-linear
Perturbative at short range — high E —
asymptotic freedom
Non-perturbative at long range — “low” E~ 1 GeV
infrared slavery Confinement?

Model QFT calculations: Yukawa front form construction
accommodates generalized parton distributions? No gluons, but . . .

NJL model for pions with front form construction

4/12/23 G. R. Goldstein GHP2023 5



e+N—=>e’+ v or meson + N’
Y

- Exg!usive reactions

(p'10(z)Ip)

{(p|O(x,k1)|p)
e+N—2>e’+y or meson + X
Semi-inclusive reactions

Y

- e e+tN—>e'+N’
('|Olp) elastic

e+N—2>e’+X
Inclusive reactions (p|O()|p)

—— [dz

{p|O|p) From Lorce SPIN2018
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Field theories & quantization

Quantum field theories

Functions in space & time
*  Relativistic covariance
*  Commuting and Anticommuting functions
* Source charges and currents => A, (r, t) or E & B waves
* Approximation techniques: multipoles, Green functions, . ..
*  FINITE VOLUME space & numerical solutions => Lattice field theory enterprise

Quantizing: field operators with non-zero commutators => QED — charges & photon fields U(1)
abelian gauge covariance

With all the complications of singularities, renormalization, low energy photon emission regulation . . . Infinite
degrees of freedom . .. o (Q?) small

QCD chromoelectric & chromomagnetic fields - SU(3)_,,,, gauge covariance - o5 (Q?) large!

Start with simpler quantum field theories, but non-linear interactions => non-perturbative solutions
Preliminary: Single scalar boson field theory: ¢* (see Preskill et al.; Vary, et al.)

Scalar boson and fermion Yukawa interaction — Tufts QC group

Nambu Jona-Lasinio effective theory with confinement — Tufts + lowa State

aDS/CFT - Tufts + lowa State + UCBerkeley = NuHaQ

GPDs for mesonic system — C.Gustin and GG

G.R.Goldstein - GHP 2023



Light-front quantization
1+1d Yukawa model
* Lagrangian density

| 1
L= —(()(;‘))2 - 3111]3C) + 39 o, — m et — A\

(RN

* Scalar boson ¢+ spin 72 fermion
e Light-front coordinates x*=x%+ x!
* Quantize in 1d box L with cutoff A:

2m m?
+ _ - _ _ 19 ,
pn_fn~ pn_E n—]..234\
* Eigenstates of Hamiltonian are bound states of ¢ & ¥
quanta.



udnourmm rield 1neory In
the Front Form

The “light-cone time” x* A
and “light-cone distance” x ~:

x* = xV #£x! . (2)

The instant form The front form

From the point of view of a massless particle moving, say, to the
left, all the massive particles move to the right:

All the light-cone momenta of massive particles are positive.
Slide: Michael Kreshchuk, Tufts

G.R.Goldstein - GHP 2023



Decompose scalar and fermions
and guantize

pi=""n,  pr=—r, n=123.. A,

G.R.Goldstein - GHP 2023
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Digitizing 1+1 QFT on light front

* Complete commuting set of “observables”
P*r=E+P & “Charge” = Q
define K& HviaP+*=(2n/L) K& P-=(L/2mt) H
PM2=F2-P2=P*P=KH

* K or Harmonic resolution plays role of number
operator in simulations of quantum chemistry

* H~ Hamiltonian  (Pauli &Brodsky PRD32,1993&2001 (1985))

G.R.Goldstein - GHP 2023 11



DLCQ
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Discretized light-cone quantization (DLCQ)

H. C. Pauliand S. J. Brodsky, PRD 32, 1993 (1985), T. Eller, H. C. Pauli, and S. J. Brodsky, PRD 35, 1493 (1987),
A. Harindranath and J. P. Vary, PRD 36, 1141 (1987)

ro1 1
0 ,U L o
* =l

/ x* x*=x%+x! light-front time

,
/ -_.0 .1 light-front
A X =X"-X" |ongitudinal

> x! coordinate
) . k*= ko'l' kl light-front

/ N momentum
- 1
k = ko" k light-front energy

k-o=ka2a? —kle! = §k+x — Ek: zt Ju'v [1/2 0 ]
L 0 1 L) 1 L eie = (Fa e e

=—-k' (¢ —z2z )+ -k (z +x)=—(k' +k )x= — —=(k' — k )z

— 2 2 4 2

Slide: Mengyao Huang - ISU
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Defining DLFQ - continued

*H, K, Q(charge) now decomposed in creation &
annihilation operators

Q=Y (bib,—did,) .  K=> n(ala,+bib, + did,)

* H=H,,+ H,+ Hs + H: (mass, vertex, seagull’, fork’)

b'

bm% b;‘c i c;' Vertex
¢/

b ¢!
I bz bmcf & Seagull
c. b.'-
b ‘W c bL B C;r CIL
B!

G.R.Goldstein - GHP 2023 13




Block structure of DLFQ solutions

* Fock space elements (like orbital occupancies in Qchem)
fermionic, antifermionic, bosonic d.o.fs

{7;, @;}) = [na"™,ma™, ..., 0" 1", 12, . ... ,T%W; i~ 2 e » ﬁ;ﬁ 1,

n; and bar(n;) and tilde(n;) « momentum states
with occupation numbers w; ‘s 0 or 1 for fermions
Fixing K, Q leaves block structure — diagonalizing at fixed M?

‘ . , 2
*\[2|q11\5> — [XH|\I]I\ €> — (A[I‘\',s) |\IJI'\"'.,S>



Encoding for quantum computer
qubits

 Direct-direct: Light front Fock states to qubit string
* Direct-compact —to minimize qubit number

e compact mapping stores only momentum modes
with nonzero occupancies:
|(ﬁ17 ,&}l)a (ﬁ% {132)1 .o >

* For such an encoding, the number of qubits scales
as O(\/Klog K)

Mapping Qubit number, Q Hamiltonian | Hamiltonian

locality sparsity
Direct-Direct O(K log K) O(log K) N/A
Direct-Compact O(K) O(log K) N/A

Compact O(VK log K) N/A O(K?)



Block structure
MUy ) = KH| V) = (M)’ |V, o)

Hy = Zn = [aTan(mB + g%y ) + bl n(mF + ¢2B,) + dld, (mF+g 'yn)]

* Increasing K > more bound states with higher
resolution

* each state s=s* appears at some K. & is in all K>K_«

K | Fermion States | Boson States

Q=0 0
|12),]21) ;;12>,|;;§1> i LY 12080
lm!! e

|13),| 11 <21

G.R.Goldstein - GHP 2023 16



Some composite particles . . .

* See our arXiV: 2002.04016
 also see early papers Pauli & Brodsky PRD32, 2001 (1985)

Composite particles

K=3 Q=0 sector
mf=l, mb=6

Coupling constant

G.R.Goldstein - GHP 2023 17



Extracting parton distribution functions

* folX) = folpn* /P*) = fo(n / K) = (T | N, |0 )
N;(n/K)="blb,,  N,(n/K)=d!d,, Ny(n/K)=ala,
* numbers for different parton species
Accessible for evaluating

at harmonic resolution K
AL

N
! '

Qrnax (K) Q

S T

DGLAP evolution

Figure 1: At fixed harmonic resolution K, one can calculate PDFs up to the energy
scale Q?MX(K ). Once calculated at some energy scale, the PDFs can be evolved accord-

ing to the DGLAP equations.

G.R.Goldstein - GHP 2023 18



Examples of pdf’s

* Q% dependences via

>
PP = (Z @5;) ( @jﬁj—) (Zw —J) < O
: .

J

e Truncated bound states at scale Q2 |/:(n/K, Q) = (U2 |N, [T\

(n/K) f1,5(n/ K, Q)
0.30}

0.25+
— Q%= Q2 =40.22 fermions

Q? = 202, fermions
Q? = 172, fermions
- Q%= anax = 40.22, bosons
Q? = 202, bosons
Q% = 172, bosons

0.20}

0.15}

0.10¢

0.05}

n/K

5 6 7 8 9 10 11 12 13 4

14 14 14 14 14 14 14 14 14 14 14 14 14

Figure 2: Bosonic and fermionic parton distribution functions for the model , as defined
n eq. , evaluated for harmonic resolution K = 14. The values of parameters are chosen
as in [114]: mp = 6.7, mp =1, A =1, A = 2048. Shown for the M = 18.96 eigenstate with
different values of momentum cut-off: 9 = Q?nax, 2()27 172, where ngnax = 40.2°. The choice
Q? = Q% corresponds to taking all the Fock states from the K = 14 sector into account.

G.R.Goldstein - GHP 2023 19



QFT = QComputer

* Map bosonic d.o.fs straightforward each p-mode
has qubit register assigned

* fermionic mapping =2 single qubit for each d.o.f.

* Anticommuting schemes “Jordan-Wigner” or
“Bravyi-Kitaev” or . ..

 Partitioning Hilbert Space for K into blocks of
charge Q — bosons {(n,w;)|[1 <5< \|Z wn; = K}

e With fermions

dim Dy g > dim Dg_g(9+1)/20 = P ([\ — Q(Q + 1)/2)



Some Features of the model

* 1+1 d Yukawa theory is a first step toward 3+1 d gauge
theories. Confining ele.g. Brodsky, Pauli, Pinsky)

e C.f. Schwinger model 1+1d QED
e Scalar boson — fermion interaction

* Can extract “wavefunctions”, form factors, pdf’s, boson
&/or fermion correlators

* Set up mapping’ DLCQ Fock states to qubits
* Counting conventional vs. gcomputer needed resources

K = Zn(uaun ! /)L/)n } r/,:(/n)
n \_/

e g-chemistry no.ops & orbitals €2 qubit measurement
operators




The Generalized Parton Distribution
FU.IlCtiOIl (GPD) Carter Gustin & GG

* The GPD represents the
probability amplitude to
find a parton with a
fraction of the total

............................. light-front momentum

after an interaction

1 dz= . o+ - P ~
q9 — we Pz Nal P Nata(? o
=3 [ et Pl a GNP s amo

https://www.nature.com/articles/s41567-019-0774-3
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Variational Quantum Eigensolver

(VQE)

* In order to calculate the GPD, we need ground
bound states of the Hamiltonian.

* Use VQE which 1s a hybrid-classical algorithm that
finds the minimum eigenvalue of an operator
(generally the Hamiltonian)

* VQE exploits the variational principle: g, < (w@)|u|w@))



Variational Quantum Eigensolver

(VQE)

U(9)I(B(Q= 1¥(6))

I Nen
WQ— 6% 6
ok o
|0) 6% 5 A
gk S
LT // :
E
t \
gk — gk+1 w 0(6)
Gé‘ieé‘“‘—%‘

Quantum Computational Chemistry, McArdle et. al.



Results for w* °"~ in valence qgbar
in 2+1d Yukawa and DLCQ

* Parameters: P* = P'* =3,P, =0,P] =1

* Ground bound state via VQE:
|P) = 0.7078|q3: (1,0), (2,0)) — 0.7063|qq: (2, 0), (1,0))

* Look at |P’) such that the fermion gains an
increased unit of transverse momentum:

|P'y = 0.7078]q3: (1,1), (2,0)) — 0.7063|qq: (2, 1), (1,0))



Results

GPD of |P) = 0.7078|qq: (1, 0); (2, 0)) — 0.7063|qq : (2,0), (1, 0))

le—-5
— |P) = 0.7078]qq: (1, 1); (2, 0)) - 0.7063|qd: (2, 1); (1, 0))
1.5
1.04
X
&
w
0.5 1
0.0 —
_05 <
-3/3 -2/3 -1/3 0/3 1/3 2/3 3/3

x = n/K



Simulation and Measurements
(2002.04016,2105.10941)

Product formulas (“trotterization”) do not work with compact
encoding — sparse methods — optimal in both qubits&gates.

Or ki) =k yi), (6)
OH f,y,0)=f, v, Hxy ). (7)

Example: parton distribution functions (PDFs) — momentum
distributions of quarks and gluons inside a hadron.

f(x)=f(wK)= (Yx IN}¥k), (8)
0<x =1),

N(WK ) = ajan . 9)

G.R.Goldstein - GHP 2023


https://arxiv.org/abs/2002.04016
https://arxiv.org/abs/2105.10941

Backup slides

G.R.Goldstein - GHP 2023
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Using BLFQ for NJL to use NISQ

 Basis light front quantization
 Nambu-Jona-Lasinio effective field theory

* Noisy Intermediate Scale Quantum era
 What about error correction? Grows with qubits . . .

* NJL provides quark+antiquark mesons at valence level
* Exact solutions for H, with some truncated Fock states.

e Use Variational Quantum Eigensolver to find bound
states (both conventional and quantum computers)

G.R.Goldstein - GHP 2023
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NISQ

e John Preskill (quant-ph > arXiv:1801.00862)

* Noisy Intermediate-Scale Quantum (NISQ) technology will
be available in the near future. Quantum computers with
50-100 qubits may be able to perform tasks which surpass
the capabilities of today's classical digital computers, but
noise in gquantum gates will limit the size of quantum circuits
that can be executed reliably. NISQ devices will be useful
tools for exploring many-body quantum physics, and may
have other useful applications, but the 100-qubit quantum
computer will not change the world right away --- we should
regard it as a significant step toward the more powerful
guantum technologies of the future. Quantum technologists
should continue to strive for more accurate quantum gates
and, eventually, fully fault-tolerant quantum computing.

G.R.Goldstein - GHP 2023 30
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NJL effective field theory & QC

* Consider the dynamics of valence quarks for light mesons on the light front - the
Hamiltonian

* Hamiltonian includes kinetic energy, confinement potential in longitudinal and transverse
directions

* the Nambu—Jona-Lasinio interaction for the chiral interactions among quarks.
* Limit to valence Fock sector of mesons while working with relative momentum variables.

* The dependence of the light-front wave functions for these valence quarks on the relative
momentum is expanded in terms of orthonormal basis functions.

« After implementing finite cut-offs in this expansion, the light-front Hamiltonian becomes a
Hermitian matrix in the basis representation. We use the scheme of Jia & Vary (Phys. Rev.
C, 99:035206, 3 2019)

» fixes our model parameters at each choice of basis cut-offs.

* run the VQE minimization on the IBM Vigo machine to calculate the squared pion mass.
Using the resulting wave function, we calculate squared mass, decay constant, mass
radius, electromagnetic form factor, and charge radius of the pion.

* Pdf’s for nucleon? See Vary, et al. arXiv preprint arXiv:2112.01927 (2021). Valence quarks ..

* GPDs and TMDs in progress for pions and diquark model of nucleons



NJL details .

e Hamiltonian Hy + H,, ©'f

g = FP+m® | (F)2
T l—=x
4 2 b*
+b .’E(l — IE)T‘_L ma CL'( )Bx

= i = [ @ [aet (-5
x [(Zw) - (Jz'vs?w) ] ,

Here 1 is the fermion field operator, G is the NJL
coupling constant, and P* is the total light-front
longitudinal momentum of the system. We then ex-
pand eq. (14) into relevant combinations of ladder op-
erators for the quark fields. In the basis representa-
tion, this term further takes the form of a hermitian
matrix, the elements of which can be calculated an-
alytically [43].

(4)

G.R.Goldstein - GHP 2023
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Basis functions
* For Hy there is transverse momentum & confined

longitudinal motion
wrs(x,’_{:l)

F::_L

s Z wnmlrs ¢nm .’L'(l — IE) ; b X1 (-T)

nml

where Y,.mirs 1S the expansion coefficient, ¢, is a
2-dimensional (2D) harmonic oscillator (HO) eigen-
function, and x; is the longitudinal basis function.
Here r and s are the spin indices of the quark and
the anti-quark. Each term in eq. Q5) is an eigen- J = 0 states

function of Hy in eq. (3). Explicitly, ¢pnm is defined
as

jmi
AR 4mn! Fad
bum (7459) = 3 (n+|m|)!( b )
(6)

6J.2 6L2 )
X exp (—2b2> X L|nm| (1)2) exp"mp y

with tan(p) = ¢?/q' and L™ being the associated
Laguerre function. The parameter b sets the scale
G.R.Goldstein - GHP 2023




Some NJL Results

hij = FBLFQ

640323 139872 —139872 —107450

139872 346707 174794 139872 (39)
— 139872 174794 346707 —139872 | °
—107450 139872 —139872 640323

in units of MeV2. The two lowest eigenvalues
correspond to 7 and p meson squared masses:
the ground state is (0.34, —0.62, —0.62,0.34)%, with
m?2 = 139.6%2 MeV2.

m m K Gw Nmax Mmax Lmax
337.01 MeV 337.01 MeV 227.00 MeV 250.785 GeV~2 0 2 0

Table III. Model parameters for the BLFQ-NJL model.

Ry(02) E
|O>®4 _E T IYI i A |0>®2 { ) Ry(el) Ry(03) —
—— Ry(6) { Ry (62) |
Ry(03)

(a) (b)

Figure 3. Ansatz circuits for preparing an arbitrary superposition of single-particle Fock states with real coefficients.
For the direct encoding (a), we use a generalization of a circuit from [71] for preparation of Wy states. For the binary
encoding (b), we use arbitrary state preparation, with all single qubit rotations replaced by R, () gates, where R, ()
denotes a single-qubit rotation through an angle 6 about the y-axis.

G.R.Goldstein - GHP 2023
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== Exact; Direct enc.

5-10° 1 — Classical sampling; Direct enc.
—— IBM Vigo; Direct enc.

—— IBM Vigo (err. mit.); Direct enc.
= = Exact; Compact enc.
~==C(lassical sampling; Compact enc.
=== IBM Vigo; Compact enc.

3.10° - IBM Vigo (err. mit.); Compact enc.

Hamiltonian expectation value, MeV?
—
(e}
ot

NN ——— \’*——‘1_

S T Y A /

agn
\
I
|
\
!
/
v
I
U
\
1
I
I
I
\
[
i
I
1
I
I

[en)

0 5 10 15 20 25 30 35
Optimization steps

Figure 5. The results of the VQE minimization algo-
rithm in the compact and direct encodings. These were
obtained from 8192 samples per term on IBM Vigo ma-
chine, with and without measurement error mitigation.

0.06 1 1.00
0.98
0.05 < 0.96
[

0.94 1

0.92 1

0 5000 10000
Q?, MeV?

Exact; Direct enc.

Classical sampling; Direct enc.
IBM Vigo; Direct enc.

IBM Vigo (err. mit.); Direct enc.
Exact; Compact enc.

Classical sampling; Compact enc.
IBM Vigo; Compact enc.

0.01 1

+-Q|><tl|

IBM Vigo (err. mit.); Compact enc.
—izf #

T T T T

1 2 3 4 5
Q?, GeV?

Figure 6. Pion elastic form factor, as defined in eq. (27).
Pion elastic form factor is used to calculate the charge
radius, obtaining the values given in Tab. @ (charge ra-
dius is defined in eq. @[) Datapoints for the quantum
simulation on the IBM Vigo processor used 8192 samples
per term, with and without measurement error mitiga-
tion. The results measured on the quantum computer
are in good agreement with the exact ones due to the
strong contribution to the measurement operators from
the identity term.

Masses & Form Factor

G.R.Goldstein - GHP 2023
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Summary & future

* For 1+1 d Yukawa
e Obtained block diagonalized |.f. wavefunctions

* Developed mapping 1+1 d Yukawa occupation number states to
qubit registers

e pdf’s involve measurements of occupation numbers
e Extended to form factors and decay constants
* NJL model & pion structure

 GPDs and TMDs in progress for pions and fermion+boson model
of nucleons

 Next QCD in 3+1 d with helicity & color d.o.f.’s

* Pdf’s for nucleon? See Vary, et al. arXiv preprint arXiv:2112.01927
(2021). Valence quarks ..

e Quark+diquark fields to model nucleon with simple interaction



Particulars of 1+1D l.c. formulation

* Metric: gyo=-91:=1,9¢1=91,=0

*gtt=g—=0; g'=g~’=

* V=03, ¥'=i0,

* Independent fields ¢ & y*) with =y & = Ay
AB=Yy* y*

* Box quantization:

A
| _ 1 Ciot ot e
dlxt, 27) = E (ane Prtu 4 gl e'Pn ‘l'“)
— V4mn

A
NG P u ( —iphx t iplz )
D (T, ) = E b.e ko4 d e tne

[(;l‘m: a':'r\] — 6mn: {bmﬂ bx} — 5mn? {d’m-’ di} — 6m';

G.R.Goldstein - GHP 2023 37
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Impact-parameter distributions

Complicated hard exclusive processes ?

Hard exclusive processes

Elastic scattering

From Lorce SPIN2018

ey e G. R. Goldstein GHP 2023 oo



Computation sizes
* One example of advantage of |.f. formulation

* Encoding I.f. Fock states = higher dim QFT’s

e Qubit scaling increases O(K) vs. equal time
guantization.

* For 203 grid in I.f. method mom-space with n=5 &
n.=3, the upper bound equation =2 1360 qubits <<
4x10° in some estimates (e.g. Lamm, et al.
arXiv:1908.10439)



Time evolution at constant harmonic
resolution & state preparation

* Goal of simulation algorithm to prepare eigenstates
of interacting field theory £ for K & charge Q

Sparsity

100+
50+

1!

0.5

0.1 : : : : K

3 5 10 15 20

Figure 3: Hamiltonian sparsity vs. K. The curves label the upper and lower bounds on
the sparsity, while the data points mark the exact sparsities for K = 3,4, ...,19. The upper
and lower bounds are given by 7,,pe = %K >4 %K — 1 and Mower = %K - %K + 1 (derived
in App. [A.2).

G.R.Goldstein - GHP 2023 40



The Steps of VQE

VQE Inputs: Hamiltonian in terms of Paulis Py, parameterized ansatz
circuit which outputs ansatz state |4(6))

VQE Outputs: Approximate ground state and ground state energy

@ Encode Hamiltonian H =), ap, Py
@ Quantum: Prepare ansatz state |y(0))
© Quantum: Sample (¥(0)| Pk |1(0)) for all k (eigenvalues +1)

Q Classical: Add up (H) =), ap, (¥(0)| Pk |¥(0))
@ Classical: Change 8 — ¢’ to lower (H)

@ Both: Repeat Steps (2)-(5) to find lowest (H)
@ Both: Stop when converged

G.R.Goldstein - GHP 2023 41



Quantum
State
Preparation

* Thanks Ken Robbins

Quantum
Measurement

Classical
Optimization

G.R.Goldstein - GHP 2023
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Beginning QCD 3+1D simulation

* Upper bound on number of required qubits to
store |.f. wavefunctions

Q< 2K [[1og2 K7 +2log A1+ 1+ [logy ny] + [log, ncl]

A\
~~ s ~~
number of momentum helicity flavors colors
. N J
occupied ~~
fermion /antifermion fermion /antifermion mode quantum numbers
modes

+ K [[logQ K] +2[logy A1+ [logy K1+ 1+ [logy(nZ — 1)]]
N~ ~ s N——— NN p

. o "
number of momentum occupancy helicity colors
. N e
occupied N~
boson modes boson mode quantum numbers

G.R.Goldstein - GHP 2023 43



Time evolution & state preparation

2.3 Time evolution at constant harmonic resolution

The goal of our simulation algorithm is first to prepare the eigenstates of the interacting
quantum field theory described by Lagrangian given in eq. @ In each sector of fixed
harmonic resolution K and charge @, the lowest mass-energy particle is a physical particle
of the theory. We then aim to perform measurements on the state to determine properties
of these composite particles such as PDFs and form factors.

State preparation is a basic element of any quantum simulation algorithm. In this section
we give bounds on the cost in terms of quantum gates required to evolve a state in a subspace
of fixed harmonic resolution K for time ¢, to precision . We use the methods of [17, 13, 136],
which are optimal in all relevant parameters.

Sparse Hamiltonians may be specified efficiently by two oracles: functions that can be
called to give the defining information for the Hamiltonian. In App. |C|we give details of
implementing two oracles needed by the methods of [17,/13]. The first is Op — an oracle that
enumerates the positions of non-zero entries of the Hamiltonian in a given row. Op is defined
in App. C.1|where we show that the cost of O for the compact mapping is O(VK log K).The
second is Oy, an oracle that computes the value of a nonzero entry to p bits of precision given
its indices. Oy is defined in App. |C.2| where we show that the cost of Op for the compact
mapping is O (K log K + p*log p).

Using Theorem 1 from [13], simulation of time evolution for time ¢ under a Hamiltonian
on n qubits of sparsity d and maximum matrix element ||H||,.. to precision € is given in
terms of the parameter 7 = d||H||axt- The number of calls to Oy and Oy is

log 7/e€
O(Tloglog7/6> ’ (18)
and an additional i /
5/2 0gT/€
0] (T[n + log”*(7/€)] 710g log 'r/e) (19)

gates are required.

To simulate time evolution in a subspace of constant harmonic resolution K for time ¢
in the compact mapping we have n = O(VK log K), ||H||max = O(K log K/A), d = O(K?)
and hence 7 = O(tK*log K/A). The number of oracle calls required is then O(tK %), and
the number of gates required for this number of calls is 5(tK 4) if p is polylogarithmic in K.
The number of additional gates required is 5(tK 7/2) and so the overall simulation cost up to
logarithmic factors is O(tK™).
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Something more about errors . . .

Direct encoding Compact encoding
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Figure 7. Relative errors in estimates of various observables. These were obtained from 8192 samples per term on IBM
Vigo machine, with and without measurement error mitigation. Physically significant observables have a significant
contribution from the constant term in their multi-qubit representation. Observables are shown with and without
the contribution of the constant term. For the GS energy, the error was calculated relative to the second lowest
eigenvalue, mf,. For the compact encoding, measurement error mitigation consistently improves the results.
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Gates & errors (k. Robbins)
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