Threshold charmonium photoproduction with GlueX

Lubomir Pentchev (GlueX Collaboration)

 Recent J/ψ results: <u>https://arxiv.org/abs/2304.03845</u>

- C-even charmonium states
- Prospects with CEBAF energy upgrade

Exclusive reaction $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$

- GlueX uses tagged polarized photon beam (0.2% energy resolution) from coherent Bremsstrahlung (of 12 GeV electron beam) off thin diamond
- +exclusivity of the reaction: kinematic fit 13 MeV mass resolution;
- J/ ψ yields extracted from fits of $M(e^+e^-)$ distributions
- BH(1.2 2.5 GeV) used for normalization

- Event-by-event weighting by luminosity
- Dots mean energy and t-value for the corresponding bin
- Results reported at mean energy for corresponding slice
- Deviations due to bin averaging included in the systematic errors

GlueX results: total and differential cross-sections $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$

• σ_{tot} increasing with energy approximately following the phase space

however:

- Possible structure in $\sigma(8.6 9.6 GeV)$, the statistical significance of the two "dip" points is 2.6σ ; if include look-elsewhere effect - 1.3σ
- however: $\int d\sigma dt$ at bio
- Enhancement of $d\sigma/dt$ at high t (for the lowest energy slice), indicates contribution beyond gluon exchange

Differential cross-sections vs Lattice QCD

Dipole fits: $\frac{d\sigma/dt(0)}{(1-t/m_s^2)^4}$

$q_{c.m.}, GeV$ (J/ ψ p c.m.)	0.499	0.767	0.978
$d\sigma/dt(0), nb/GeV^2$	3.121 ± 2.23	2.303 ± 0.400	4.184 ± 0.541
m_s, GeV	1.089 ± 0.172	1.453 ± 0.074	1.314 ± 0.049

 $m_s of A_g(t), GeV$ Lattice QCD 1.13 ± 0.06

 $d\sigma/dt(t)$ generally consistent with gluon exchange mechanism

More detailed analysis in Shivangi Prasad's talk from Hall C (J/ ψ -007) data

GPD factorization models

0.8

0.7

-0.6

0.5

0.4

0.3

0.2

0.1

FIG. 3. Feynman diagram for the proposed CC mechanism. The dashed blue line pinpoints the open-charm intermediate state.

C-event charmonium states at threshold with GlueX C-odd $(J/\psi, \psi')$ vs C-even (χ_c) production

- $\chi_{c1}(3511)$ and $\chi_{c2}(3556)$, 1⁺⁺ and 2⁺⁺ (1*P*), $E_{\gamma}^{thr} = 10.1$ GeV
- C-even charmonium states require 3g-exchange
- GlueX has observed also a small number of $\psi'(3686) (2S)$ states in $\gamma p \rightarrow \psi' p \rightarrow (e^+e^-) p$, $E_{\gamma}^{thr} = 10.9 \text{ GeV}$

C-event charmonium states at threshold with GlueX

C-odd $(J/\psi, \psi')$ vs C-even (χ_c) production

First ever (?) evidence for photoproduction of C-even charmonium

C-even charmonium states with GlueX

C-odd $(J/\psi, \psi')$ vs C-even (η_c, χ_c) production

10

Hall D Apparatus with 17+ GeV electron beam

Moving end point from 12 GeV to 17+ GeV:
- higher flux (and polarization) toward higher energies, while low energies less affected (no load on detectors)

11

Charmonium polarization measurements at 22 GeV

Any deviation from the expected naturality indicates contribution of mechanism different from what is needed to study mass properties of the proton

Conclusions

- The reported total and differential cross sections of J/ψ photoproduction near threshold are generally consistent with gluon exchange (t-slope, GPD factorization), except some features consistent with open charm exchange.
- It is important to separate between the gluon exchange, open-charm exchange, or any other contribution (resonances (P_c 's), u-channel) and possibly find a kinematic region that can be used to constrain gGPDs, extract proton gravitational form factors and study mass properties of proton.
- First ever (?) evidence for C-even charmonium photoproduction important tool to understand C-odd exchange mechanism (3gluon - odderon?)
- JLab energy increase would be critical in understanding the charmonium photoproduction near threshold and justify this reaction as a method to study mass properties of the proton

Back-ups

GlueX results: comparison to Hall C (J/ ψ -007)

- Three GlueX energies compared to closest Hall C (J/ψ-007) energies
- Shown only 4 out 10 energies for Hall C common fit of all 10 used to disentangle contributions from $A_g(t)$ and $C_g(t)$ (B.Duran <u>https://arxiv.org/abs/2207.05212</u>)
- Scale uncertainties: 20% in GlueX and 4% in Hall C results
- Good agreement within the errors; note also differences in average energies