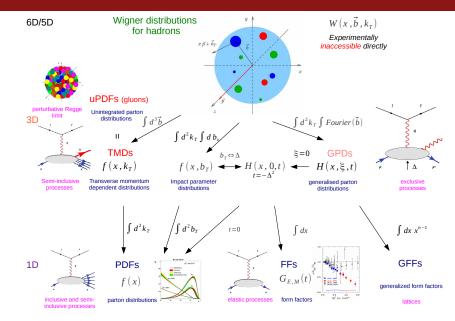
Probing twist-2 GPDs through the exclusive photoproduction of a photon-meson pair at EIC and beyond

10th Workshop of the APS Topical Group on Hadronic Physics

Saad Nabeebaccus IJCLab

G. Duplančić, K. Passek-Kumerički

Introduction



Quark GPDs at twist 2 [Diehl]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$\begin{aligned} F^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right], \end{aligned}$$

$$\begin{split} \tilde{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^{+} \gamma_{5} \, q(\frac{1}{2}z) \, |p\rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q}(x,\xi,t) \, \bar{u}(p') \frac{\gamma_{5} \, \Delta^{+}}{2m} u(p) \right]. \end{split}$$

 $H^q \xrightarrow{\xi=0,t=0} \text{PDF } q \xrightarrow{\tilde{H}^q} \xrightarrow{\xi=0,t=0} \text{ polarised PDF } \Delta q$

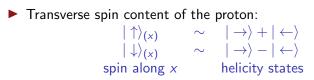
with helicity flip (chiral-odd Γ matrices): 4 chiral-odd GPDs:

$$\begin{split} &\frac{1}{2}\int\frac{dz^{-}}{2\pi}\,e^{ixP^{+}z^{-}}\langle p'|\,\bar{q}(-\frac{1}{2}z)\,i\,\sigma^{+i}\,q(\frac{1}{2}z)\,|p\rangle\Big|_{z^{+}=0,\,z_{\perp}=0} \\ &=\frac{1}{2P^{+}}\bar{u}(p')\left[H^{q}_{T}\,i\sigma^{+i}+\tilde{H}^{q}_{T}\,\frac{P^{+}\Delta^{i}-\Delta^{+}P^{i}}{m^{2}}\right. \\ &\left.+E^{q}_{T}\,\frac{\gamma^{+}\Delta^{i}-\Delta^{+}\gamma^{i}}{2m}+\tilde{E}^{q}_{T}\,\frac{\gamma^{+}P^{i}-P^{+}\gamma^{i}}{m}\right]\,u(p)\,, \end{split}$$

 $H^q_T \xrightarrow{\xi=0,t=0}$ quark transversity PDFs δq

Note:
$$\tilde{E}_T^q(x, -\xi, t) = -\tilde{E}_T^q(x, \xi, t)$$

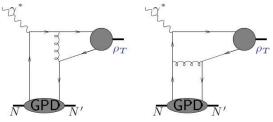
Why consider a gamma-meson pair? Understanding transversity



- Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- Transversity GPDs are completely unknown experimentally.
- ► For massless (anti)particles, chirality = (-)helicity
- Transversity GPDs can thus be accessed through chiral-odd F matrices.
- Since (in the massless limit) QCD and QED are chiral-even $(\gamma^{\mu}, \gamma^{\mu}\gamma^{5})$, the chiral-odd quantities $(1, \gamma^{5}, [\gamma^{\mu}, \gamma^{\nu}])$ which one wants to measure should appear in pairs.

Why consider a gamma-meson pair? Can we probe transversity GPDs in DVMP?

- the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)
- Infortunately γ^{*} N → ρ_T N' = 0, since such a process would require a helicity transfer of 2 from a photon. [Diehl, Gousset, Pire], [Collins, Diehl]
- Iowest order diagrammatic argument:



$$\gamma^{\alpha}[\gamma^{\mu},\gamma^{\nu}]\gamma_{\alpha}=\mathbf{0}$$

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorisation (end-point singularities)

can be made safe in the high-energy k_T -factorisation approach

[Anikin, Ivanov, Pire, Szymanowski, Wallon]

A convenient alternative solution

Circumvent this using 3-body final states:

- $\gamma N \rightarrow MMN'$:

El Beiyad et al. [1001.4491], Enberg et al. [hep-ph/0601138], lvanov et al. [hep-ph/0209300]

 $-\gamma N \rightarrow \gamma M N'$:

Boussarie et al. [1609.03830], Duplancic et al. [1809.08104, 2212.00655, 2302.12026]

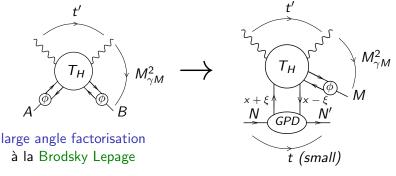
Also many others that are not sensitive to chiral-odd GPDs:

- γN → γγN': Pedrak et al. [1708.01043], Grocholski et al. [2110.00048, 2204.00396]
- $\pi N \rightarrow \gamma \gamma N'$: Qiu, Yu [2205.07846]

Why consider a gamma-meson pair?

A convenient alternative solution

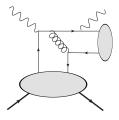
► Consider the process $\gamma N \rightarrow \gamma M N'$, M =meson. Collinear factorisation of the amplitude at large $M^2_{\gamma M}$, t', and small t.



Mesons considered in the final state: π^{\pm} , $\rho_{L,T}^{\pm,0}$.

Chiral-odd GPDs using $\rho_T \gamma$ production

How does it work?



Typical non-zero diagram for a transverse ρ meson

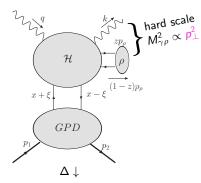
the σ matrices (from either the DA or the GPD) do not kill it anymore!

Why consider a gamma-meson pair? Is QCD factorisaton really justified?

- ► Recently, factorisation has been proved for the process $\pi^{\pm}N \rightarrow \gamma\gamma N'$ by Qiu, Yu [2205.07846].
- ► This was extended to a wide range of 2 → 3 exclusive processes by Qiu, Yu [2210.07995]
- ► The proof relies on having large p_T, rather than large invariant mass (e.g. photon-meson pair).
- ▶ In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N'$ by Grocholski et al. [2110.00048].
- ► Also, NLO computation for γγ → π⁺π⁻ by crossing symmetry (but involves DAs only) by Duplancic and Nizic [hep-ph/0607069].

Computation Kinematics

$\gamma(q) + \mathcal{N}(p_1) ightarrow \gamma(k) + ho(p_ ho, arepsilon_ ho) + \mathcal{N}'(p_2)$

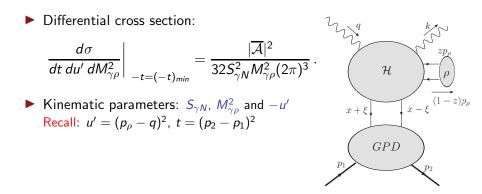


Useful Mandelstam variables:

 $egin{aligned} t &= (p_2 - p_1)^2 \ u' &= (p_
ho - q)^2 \ t' &= (k - q)^2 \end{aligned}$

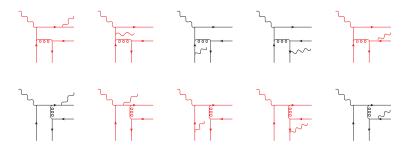
- ▶ Factorisation requires: $-u' > 1 \text{ GeV}^2$, $-t' > 1 \text{ GeV}^2$ and $(-t)_{\min} \leq -t \leq .5 \text{ GeV}^2$ ⇒ sufficient to ensure large p_T .
- Cross-section differential in (-u') and $M^2_{\gamma\rho}$, and evaluated at $(-t) = (-t)_{\min}$.

$$\mathcal{A} = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x,\xi,z) \ H(x,\xi,t) \ \Phi_{\rho}(z)$$



Computation Hard Part: Diagrams

A total of 20 diagrams to compute



Need to compute 10 diagrams: Other half related by $q \leftrightarrow \bar{q}$ (anti)symmetry.

- In fact, by choosing the right gauge, only 4 diagrams can be used to generate all the others by various symmetries (eg. photon exchange).
- Red diagrams cancel in the chiral-odd case

For polarised PDFs (and hence transversity PDFs), two scenarios are proposed for the parameterization:

- "standard" scenario, with flavor-symmetric light sea quark and antiquark distributions.
- "valence" scenario with a completely flavor-asymmetric light sea quark densities.

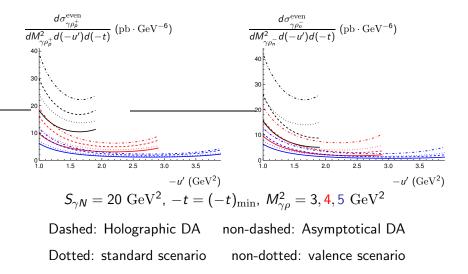
We take the simplistic asymptotic form of the DAs

$$\phi_{\rm as}(z)=6z(1-z)\,.$$

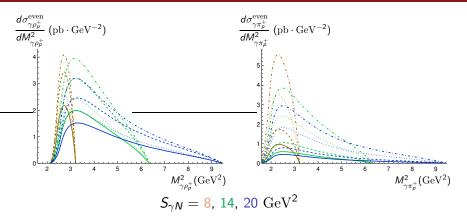
We also investigate the effect of using a holographic DA:

$$\phi_{\mathrm{hol}}(z) = \frac{8}{\pi} \sqrt{z(1-z)}.$$

Suggested by AdS/QCD correspondence [Brodsky, de Teramond], dynamical chiral symmetry breaking on the light-front [Shi et al.], and recent lattice results. [Gao et al.]

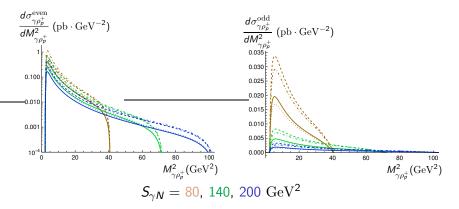


Results Single differential cross-section: ρ_{p}^+ , vs π_p^+



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario \implies Effect of GPD model more important on π_p^+ than on ρ_p^+

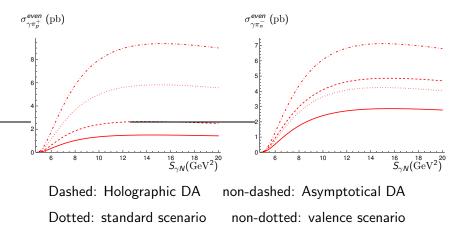
Results Single differential cross-section: $\rho_{p_I}^+$ vs $\rho_{p_T}^+$



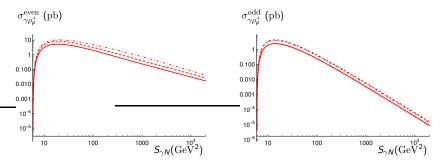
Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

 \implies CO cross-section is suppressed by a factor of ξ^2 $(\xi \approx \frac{M_{\gamma_{\rho}}^2}{2S_{\sim N}})$.

Results Integrated cross-section: π_p^+ vs π_n^-



 \implies Huge effect from GPD model in π_{ρ}^+ case.



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario $\implies \xi^2$ suppression in the chiral-odd case causes the cross-section to drop rapidly with $S_{\gamma N}$. We consider an unpolarised target, and determine polarisation asymmetries wrt the incoming photon.

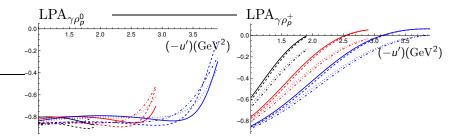
- Circular polarisation asymmetry = 0.
- ► Linear polarisation asymmetry, LPA = $\frac{d\sigma_x d\sigma_y}{d\sigma_x + d\sigma_y}$, where x is the direction defined by p_{\perp} (direction of outgoing photon in the transverse plane).

In fact,

$$LPA_{Lab} = LPA\cos(2\theta)$$
,

where θ is the angle between the lab frame x-direction and p_{\perp} .

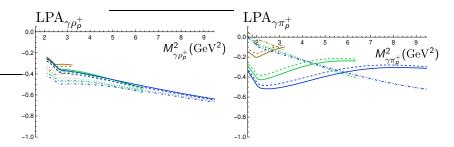
- ► Kleiss-Sterling spinor techniques used to obtain expressions.
- Both asymmetries zero in chiral-odd case!



$$S_{\gamma N}=20~{
m GeV}^2$$
, $-t=(-t)_{
m min},~M_{\gamma
ho}^2=3,4,5~{
m GeV}^2$

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

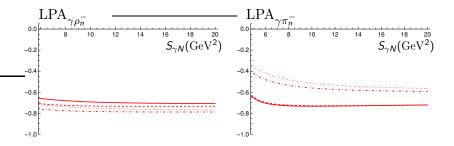
Results LPA wrt incoming photon: Single-differential level: $\rho_{p_L}^+$ vs π_p^+



 $S_{\gamma N} = 8$, 14, 20 GeV²

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario \implies GPD model changes the behaviour of the LPA completely in the π_p^+ case!

Results LPA wrt incoming photon: Integrated level: ρ_{nL}^{-} vs π_{n}^{-}



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

Good statistics: For example, at JLab Hall B:

- ▶ untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- ▶ with an expected luminosity of L = 100 nb⁻¹s⁻¹, for 100 days of run:

-
$$ho_L^0$$
 (on p) : $pprox 2.4 imes 10^5$

- ho_{T}^{0} (on p) : pprox 4.2 imes 10⁴ (Chiral-odd)

-
$$ho_L^+$$
 : $pprox$ 1.4 $imes$ 10⁵

- ho_T^+ : pprox 6.7 imes 10⁴ (Chiral-odd)
- $\pi^+:pprox 1.8 imes 10^5$
- ▶ No problem in detecting outgoing photon at JLab.

At COMPASS:

- Taking a luminosity of $\mathcal{L} = 0.1 \text{ nb}^{-1} s^{-1}$, and 300 days of run, $-\rho_L^0 (\text{on } p) :\approx 1.2 \times 10^3$ $-\rho_T^0 (\text{on } p) :\approx 1.5 \times 10^2 \text{ (Chiral-odd)}$ $-\rho_L^+ :\approx 7.4 \times 10^2$ $-\rho_T^+ :\approx 2.6 \times 10^2 \text{ (Chiral-odd)}$ $-\pi^+ :\approx 7.4 \times 10^2$
- Lower numbers due to low luminosity (factor of 10³ less than JLab!)

Prospects at experiments Counting rates: EIC

- At the future EIC, with an expected integrated luminosity of 10 fb⁻¹ (about 100 times smaller than JLab):
 - ho_L^0 (on p) : pprox 2.4 imes 10⁴
 - ho_T^0 (on p) : $pprox 2.4 imes 10^3$ (Chiral-odd)

-
$$\rho_L^+:\approx 1.5 imes 10^4$$

$$-
ho_T^+$$
 : $pprox$ 4.2 $imes$ 10³ (Chiral-odd)

-
$$\pi^+$$
 : $pprox$ 1.3 $imes$ 10⁴

Small ξ study: $300 < S_{\gamma N} / \text{GeV}^2 < 20000 \ (5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}):$ $- \rho_L^0 \ (\text{on } p) : \approx 1.2 \times 10^3$ $- \rho_T^0 \ (\text{on } p) : \approx 6.5 \ (\text{Chiral-odd}) \ (\text{tiny})$ $- \rho_L^+ : \approx 9.3 \times 10^2$ $- \pi^+ : \approx 5.0 \times 10^2$

Prospects at experiments LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

▶ With future data from runs 3 and 4,

-
$$ho_L^0$$
 : $pprox$ 1.6 $imes$ 10⁴

- ho_T^0 : pprox 1.7 imes 10³ (Chiral-odd)

-
$$\rho_L^+:\approx 1.1 imes 10^4$$

- ho_{T}^{+} : pprox 2.9 imes 10³ (Chiral-odd)
- $\pi^+:\approx 9.3\times 10^3$

►
$$300 < S_{\gamma N} / \text{GeV}^2 < 20000 \ (5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3})$$

-
$$\rho_L^0$$
 : $\approx 8.1 \times 10^2$

-
$$ho_L^+:pprox$$
 6.4 $imes$ 10²

-
$$\pi^+:pprox$$
 3.4 $imes$ 10²

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.
- Especially interesting since it can probe chiral-odd GPDs at the leading twist.
- Proof of factorisation for this family of processes now available.
- Good statistics in various experiments, particularly at JLab.
- Small ξ limit of GPDs can be investigated by exploiting high energies available in collider mode such as EIC and UPCs at LHC.

- The processes γN → γπ⁰N' and γN → γη⁰N' are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]
- Compute NLO corrections [ongoing]
- Generalise to electroproduction $(Q^2 \neq 0)$.
- Add Bethe-Heitler component (photon emitted from incoming lepton)
 - zero in chiral-odd case.
 - suppressed in chiral-even case.

The END

BACKUP SLIDES

Computation Parametrising the GPDs: ρ_L and π case, Chiral-even

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H^{q}(x, \xi, t)\gamma^{+} + E^{q}(x, \xi, t) \frac{i\sigma^{\alpha+}\Delta_{\alpha}}{2m} \right] u(p_{1}, \lambda_{1})$$

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+}\gamma^{5} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[\tilde{H}^{q}(x, \xi, t)\gamma^{+}\gamma^{5} + \tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5}\Delta^{+}}{2m} \right] u(p_{1}, \lambda_{1})$$

• Take the limit $\Delta_{\perp} = 0$.

In that case <u>and</u> for small ξ, the dominant contributions come from H^q and H^q.

Computation Parametrising the GPDs: ρ_T case, Chiral-odd

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i\sigma^{+i}\psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x,\xi,t) i\sigma^{+i} + \tilde{H}_{T}^{q}(x,\xi,t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} + \tilde{E}_{T}^{q}(x,\xi,t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{M_{N}} + \tilde{E}_{T}^{q}(x,\xi,t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \right] u(p_{1},\lambda_{1})$$

• Take the limit $\Delta_{\perp} = 0$.

In that case <u>and</u> for small ξ, the dominant contributions come from H^q_T.

Computation Parametrising the GPDs: Double distributions

 GPDs can be represented in terms of Double Distributions [Radyushkin]

$$H^{q}(x,\xi,t=0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\,\delta(\beta+\xi\alpha-x) \,f^{q}(\beta,\alpha)$$

ansatz for these Double Distributions [Radyushkin]:

chiral-even sector:

$$\begin{split} f^{q}(\beta, \alpha, t = 0) &= \Pi(\beta, \alpha) \, q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \, \bar{q}(-\beta) \, \Theta(-\beta) \,, \\ \tilde{f}^{q}(\beta, \alpha, t = 0) &= \Pi(\beta, \alpha) \, \Delta q(\beta) \Theta(\beta) + \Pi(-\beta, \alpha) \, \Delta \bar{q}(-\beta) \, \Theta(-\beta) \,. \end{split}$$

chiral-odd sector:

$$f_T^q(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) \, \delta q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \, \delta \bar{q}(-\beta) \, \Theta(-\beta) \, .$$

•
$$\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 - \alpha^2}{(1-\beta)^3}$$
: profile function

simplistic factorised ansatz for the *t*-dependence:

$$H^q(x,\xi,t) = H^q(x,\xi,t=t_{\min}) \times F_H(t)$$

with
$$F_H(t) = rac{(t_{\min} - C)^2}{(t - C)^2}$$
 a standard dipole form factor $(C = 0.71 {
m GeV}^2)$

• q(x) : unpolarised PDF [GRV-98]

and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]

- $\Delta q(x)$ polarised PDF [GRSV-2000]
- $\delta q(x)$: transversity PDF [Anselmino *et al.*]

Effects are not significant! But relevant for NLO corrections!

• Helicity conserving (vector) DA at twist 2: ρ_L

$$\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|
ho_{L}^{0}(p)
angle = rac{p^{\mu}}{\sqrt{2}}f_{
ho}\int_{0}^{1}du\ e^{-iup\cdot x}\phi_{
ho}(u)$$

• Helicity flip (tensor) DA at twist 2: ρ_T

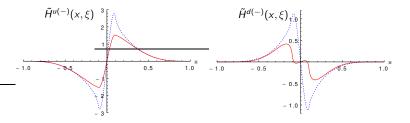
$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho_T^0(p,s)\rangle = \frac{i}{\sqrt{2}}(\epsilon_\rho^\mu p^\nu - \epsilon_\rho^\nu p^\mu)f_\rho^\perp \int_0^1 du \ e^{-iu\rho \cdot x} \ \phi_\rho(u)$$

• Helicity conserving (axial) DA at twist 2: π^{\pm}

$$\langle 0|ar{u}(0)\gamma^{\mu}\gamma^{5}d(x)|\pi(p)
angle=ip^{\mu}f_{\pi}\int_{0}^{1}du\,\,e^{-iup\cdot x}\phi_{\pi}(u)$$

Typical kinematic point (for JLab kinematics): $\xi = .1 \iff S_{\gamma N} = 20 \text{ GeV}^2 \text{ and } M_{\gamma \rho}^2 = 3.5 \text{ GeV}^2$

$$ilde{H}^{q(-)}(x,\xi,t)= ilde{H}^q(x,\xi,t)- ilde{H}^q(-x,\xi,t) \quad [C=-1]$$

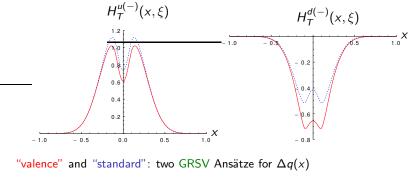


"valence" and "standard": two GRSV Ansätze for $\Delta q(x)$

Computation Valence vs Standard scenarios in H_T (Chiral-odd)

Typical kinematic point (for JLab kinematics): $\xi = .1 \iff S_{\gamma N} = 20 \text{ GeV}^2 \text{ and } M_{\gamma \rho}^2 = 3.5 \text{ GeV}^2$

$$H_T^{q(-)}(x,\xi,t) = H_T^q(x,\xi,t) + H_T^q(-x,\xi,t) \quad [C=-1]$$



$$\Rightarrow$$
 two Ansätze for $\delta q(x)$

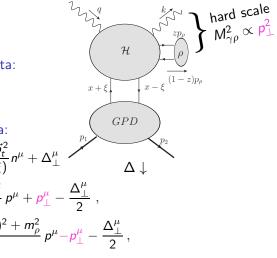
Computation Kinematics

- ► Work in the limit of:
 - $\Delta_{\perp} \ll p_{\perp}$ • $M^2 \quad m^2 \ll \Lambda$
 - $M^2, \ m_\rho^2 \ll M_{\gamma\rho}^2$
- ► initial state particle momenta: $q^{\mu} = n^{\mu},$ $p_1^{\mu} = (1 + \xi) p^{\mu} + \frac{M^2}{s(1+\xi)} n^{\mu}$
- final state particle momenta:

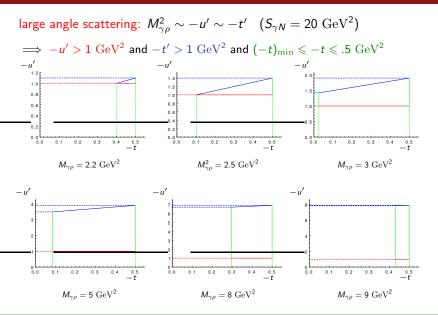
$$p_{2}^{\mu} = (1 - \xi) p^{\mu} + \frac{M^{2} + \vec{p}_{t}^{2}}{s(1 - \xi)} n^{\mu} + \Delta_{\perp}^{\mu} \qquad \Delta$$

$$k^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_{t} - \vec{\Delta}_{t}/2)^{2}}{\alpha s} p^{\mu} + p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$

$$p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(\vec{p}_{t} + \vec{\Delta}_{t}/2)^{2} + m_{\rho}^{2}}{\alpha_{\rho} s} p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$

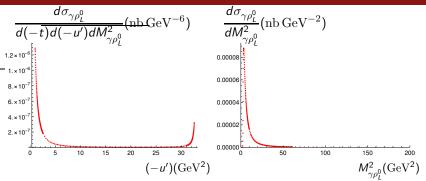


Results Phase space integration: Evolution in (-t, -u') plane



Results

Necessity for Importance Sampling



▶ Need enough points at boundaries for distribution in (-u')

▶ Need enough points to resolve peak (at low $M^2_{\gamma \rho_L^0}$) for distribution in $M^2_{\gamma \rho_L^0}$

Results Explaining the difference between chiral-even and chiral-odd plots

•
$$\xi = \frac{M_{\gamma M}^2}{2S_{\gamma N} - M_N^2} \approx \frac{M_{\gamma M}^2}{2S_{\gamma N}}$$
 for $M_{\gamma M}^2 \ll S_{\gamma N}$

Chiral-even (unpolarised) cross-section:

$$\begin{split} |\overline{\mathcal{M}}_{\rm CE}|^2 &= \frac{2}{s^2} (1-\xi^2) C_{\rm CE}^2 \left\{ 2 |N_A|^2 + \frac{p_{\perp}^4}{s^2} |N_B|^2 \right. \\ &+ \frac{p_{\perp}^2}{s} \left(N_A N_B^* + c.c. \right) + \frac{p_{\perp}^4}{4s^2} |N_{A_5}|^2 + \frac{p_{\perp}^4}{4s^2} |N_{B_5}|^2 \right\}. \end{split}$$

Chiral-odd (unpolarised) cross-section:

.

$$|\overline{\mathcal{M}}_{CO}|^2 = \frac{2048}{s^2} \xi^2 (1 - \xi^2) C_{CO}^2 \left\{ \alpha^4 |N_{TA}|^2 + |N_{TB}|^2 \right\}.$$

• Note:
$$\alpha = \frac{-u'}{M_{\gamma M}^2}$$

Results Integrated cross-section: Mapping procedure for different values of $S_{\gamma N}$

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $S_{\gamma N}$ to other values $\tilde{S}_{\gamma N}$ lower than it.

$$egin{aligned} & ilde{M}_{\gamma M}^2 = M_{\gamma M}^2 rac{ ilde{S}_{\gamma N} - M_N^2}{S_{\gamma N} - M_N^2}\,, \ &- ilde{u}' = rac{ ilde{M}_{\gamma M}^2}{M_{\gamma M}^2}(-u')\,. \end{aligned}$$

Implementing importance sampling \implies careful consideration of the various limits involved are needed.

Mapping possible since different sets of $(S_{\gamma N}, M_{\gamma M}^2, -u')$ correspond to the same (α, ξ) .

$$\alpha = \frac{-u'}{M_{\gamma M}^2}, \qquad \xi = \frac{M_{\gamma M}^2}{2(S_{\gamma N} - M_N^2) - M_{\gamma M}^2}$$

Consider

$$\gamma(q,\lambda_q) + \mathcal{N}(p_1,\lambda_1) \rightarrow \gamma(k,\lambda_k) + \pi^{\pm}(p_{\pi}) + \mathcal{N}'(p_2,\lambda_2) ,$$

where λ_i represent the helicities of the particles.

QED/QCD invariance under parity implies that [Bourrely, Soffer, Leader]

$$\mathcal{A}_{\lambda_{2}\lambda_{k};\lambda_{1}\lambda_{q}} = \eta \left(-1\right)^{\lambda_{1}-\lambda_{q}-(\lambda_{2}-\lambda_{k})} \mathcal{A}_{-\lambda_{2}-\lambda_{k};-\lambda_{1}-\lambda_{q}},$$

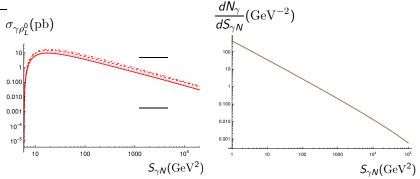
where η represents phase factors related to intrinsic spin.

Thus, at the cross-section level, it is clear that circular asymmetry will vanish, since

$$\sum_{\lambda_i,\,i\neq q} |\mathcal{A}_{\lambda_2\lambda_k\,;\,\lambda_1+}|^2 = \sum_{\lambda_i,\,i\neq q} |\mathcal{A}_{\lambda_2\lambda_k\,;\,\lambda_1-}|^2$$

Prospects at experiments

Why counting rates lower UPCs at LHC?



- Photon flux enhanced by a factor of Z², but drops rapidly with S_{γN} ⇒ Low luminosity not compensated by larger photon flux.
- LHC great for high energy, but JLab better in terms of luminosity.
- Still, LHC gives us access to the small ξ region of GPDs!