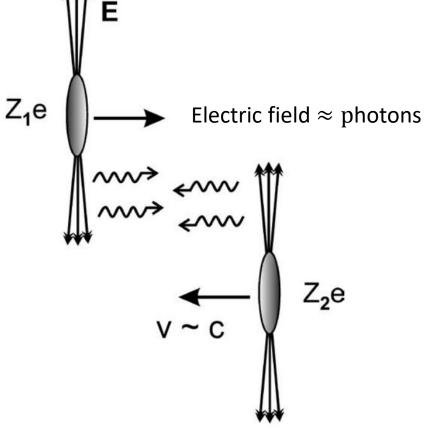


Office of Science

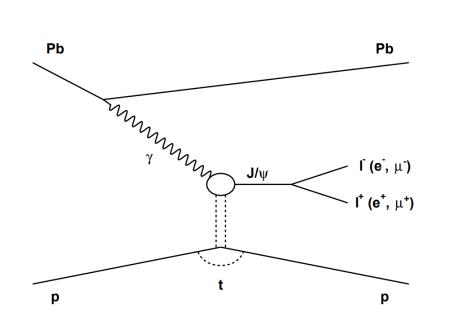


Exclusive and dissociative J/ψ photoproduction off protons with ALICE in pPb Collision

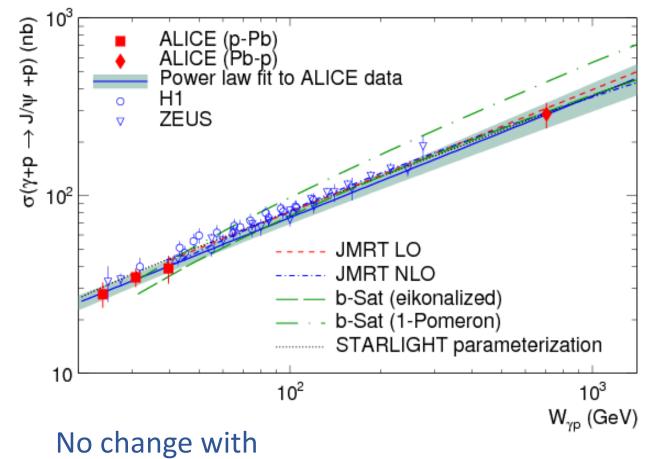
Amrit Gautam

10th Workshop of the APS Tropical Group on Hadronic Physics April 13, 2023

Vector meson photoproduction in UPCs



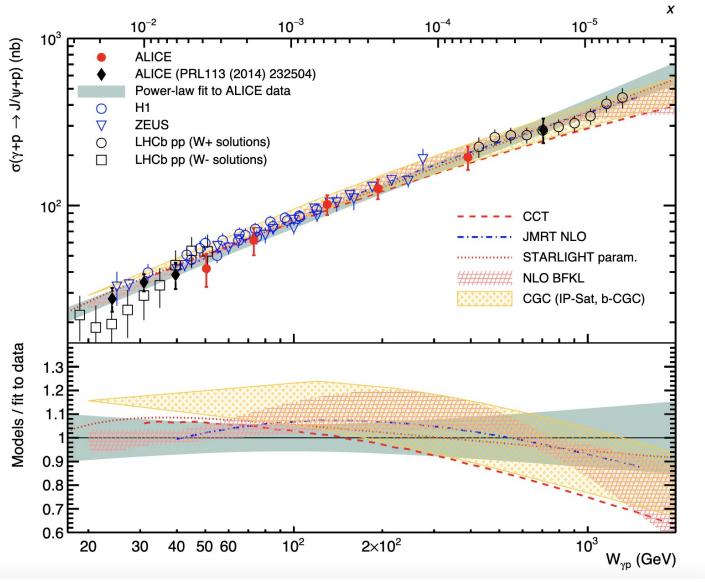
Ultra peripheral collisions b > 2R


- Photon fluctuates into quark and anti-quark pair producing vector mesons (VM) in the final state
- Photon can scatter off
 - coherently off whole nucleus (VM p_T~30MeV/c)
 or incoherently off nucleons (VM p_T~300 MeV/c)
 UPC can be accompanied by another photon exchange, results in nuclei excitation

ALICE has studied UPC physics in PbPb and pPb collisions

Energy dependence of exclusive J/ ψ photoproduction

 Deviations from the HERA power-law trend predicted as signatures of saturation



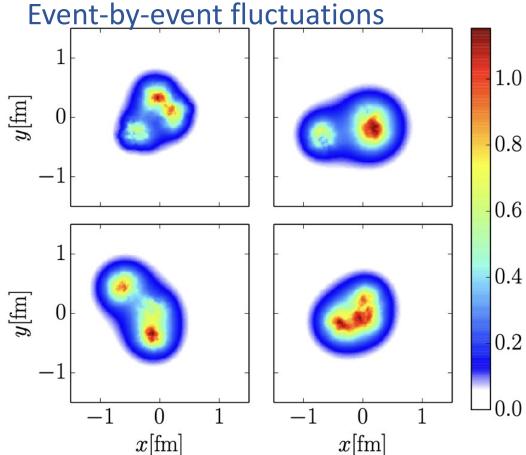
Phys. Rev. Lett. 113 (2014) 23, 232504

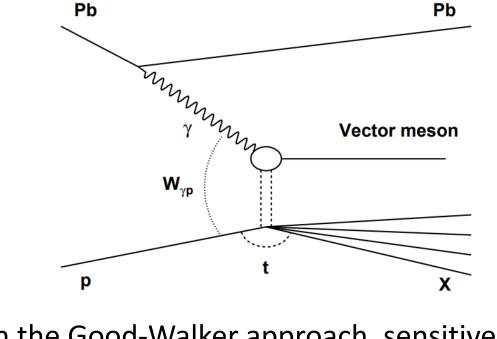
respect to HERA power-law growth observed at low energies up to 700 GeV

Energy dependence of exclusive J/ ψ photoproduction

Eur. Phys. J. C 79 (2019) 5, 402

The second UPC pPb study using ALICE Run 1 data provided additional points


UPC pPb collisions have no ambiguity on the photon energy!


$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Dissociative J/\psi photoproduction

• Energy dependence is a clear signature of gluon saturation!

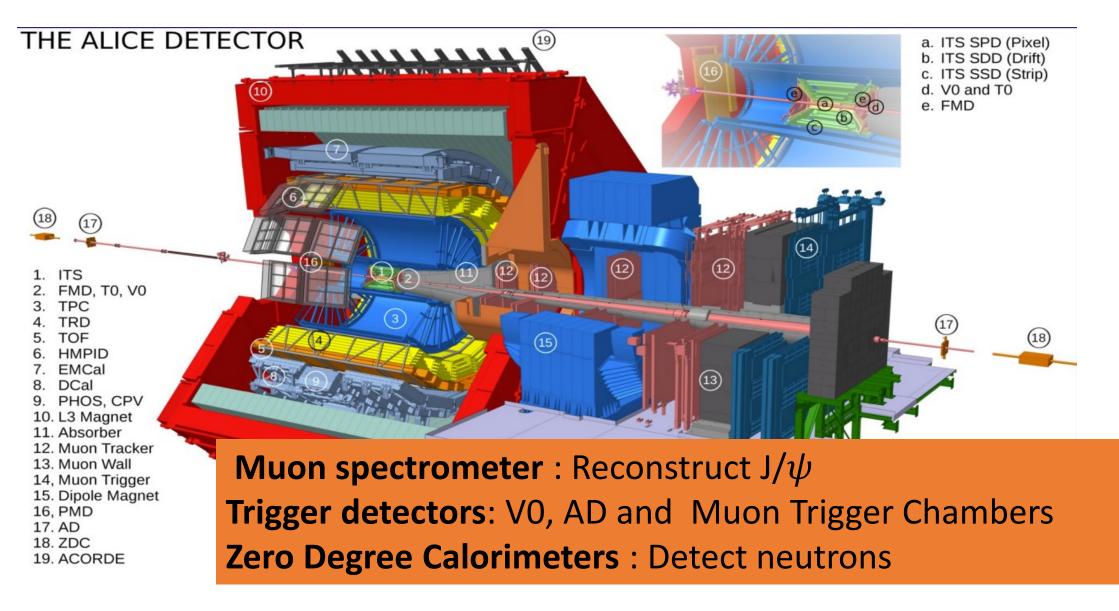
2 In the Good-Walker approach, sensitive to <u>subnucleonic fluctuations of the gluon density</u>

$$\frac{d\sigma(\gamma p \to \mathbf{J}/\psi Y)}{dt} = \frac{R_g^2}{16\pi} \left(\left\langle \left| A(x, Q^2, \vec{\Delta}) \right|^2 \right\rangle - \left| \left\langle A(x, Q^2, \vec{\Delta}) \right\rangle \right|^2 \right)$$

H. Mantysaari and B. Schenke,
Phys. Lett. B772 (2017) 832
J. Cepilia, J.G. Contreras and D. Tapia Takaki
Phys. Lett. B 766 (2017) 186-191

10th Workshop of APS Tropical Group on Hadronic Physics

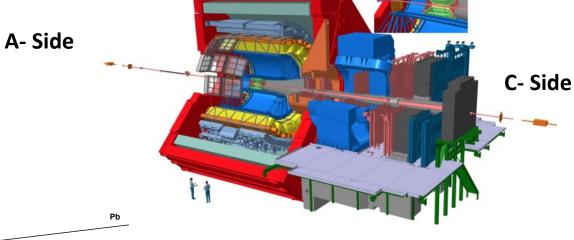
ALICE results using Run 2 data presented in this talk

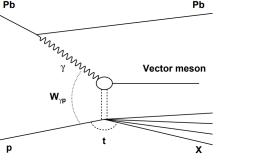

- Energy dependence of exclusive J/ψ in UPC pPb
- Measured $\sigma(\text{exclusive J/}\psi) / \sigma(\text{dissociative J/}\psi)$ as a function of W(γ p)

For the first time at hadronic colliders!

• Energy dependence of dissociative J/ ψ in UPC pPb

See talk by D. Tapia Takaki on new ALICE UPC results on PbPb https://indico.jlab.org/event/667/contributions/12275/


A Large Ion Collider Experiment (ALICE)


Exclusive and dissociative J/ ψ photoproduction off protons mmm

2016 p–Pb data at 8.16 TeV

- **ADA veto**
- VOA veto
- VOC empty or in beam timing •
- Single muon with low Pt (0.5 GeV/c) •
- **Exactly two muons**
- **Opposite-sign muons**
- -4.0 < n < -2.5
- 17.5 cm < R_{abs} < 89.5 cm
- Muon track matched to muon trigger •
- p×DCA criterion for each muon passed ٠
- $-4.0 < y_{\mu\mu} < -2.5$
- $P_{T}^{\mu\mu} < 3 \, \text{GeV/c}$

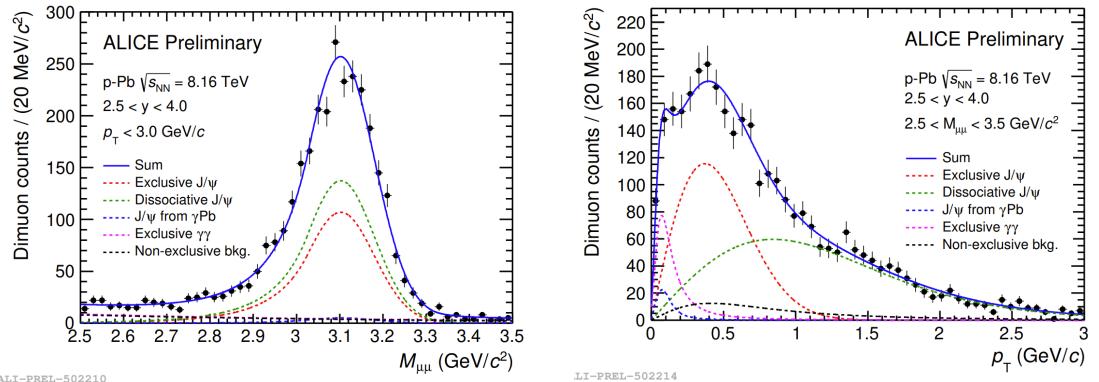
No activity proton side (VOC and ADC vetoed) No activity in Pb side (VOA, ADA and **ZDC vetoed**)

l (e, μ)

I⁺ (e⁺, μ⁺)

No activity Pb side (ADA vetoed)

Pb


Exclusive and dissociative J/ ψ photoproduction off protons

2016 p–Pb data at 8.16 TeV

- ADA veto
- VOA veto
- VOC empty or in beam timing
- Single Muon with low Pt (0.5 GeV/c)
- Exactly two muons
- Opposite-sign muons
- -4.0 < η < -2.5
- 17.5 cm < R_{abs} < 89.5 cm
- Muon track matched to muon trigger
- p×DCA criterion for each muon passe
- $P_T^{\mu\mu} < 3 \, {\rm GeV/c}$

Selection	LHC	16r
Events analysed	14687	7514
Triggered	12227	7445
Two good tracks	204	39
Opposite electric charge	164	82
Selection		LHC16r
Events after preselection		16482
No beam-beam activity in ZN Pb-side		15336
No beam-beam activity in AD Pb-side		15321
No beam-beam activity in V0 Pb-side		14221
No extra beam-beam activity in V0 p-side		7582
Less than 3 tracklets in SPD		7059

Yield extraction

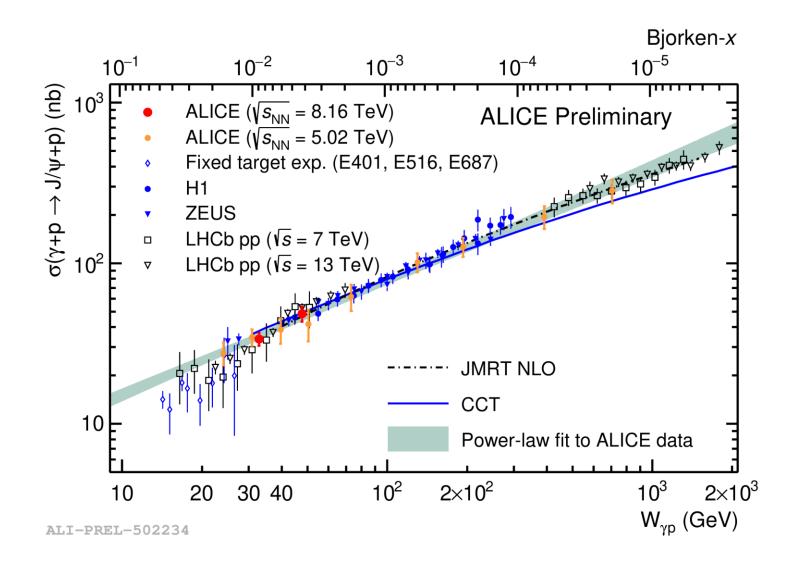
ALI-PREL-502210

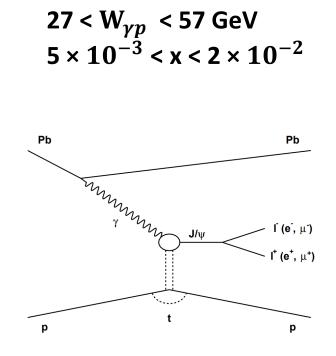
- Signal was extracted by simultaneously fitting Invariant Mass and P_T Distribution
- 2.5 GeV/ c^2 < M < 3.5 GeV/ c^2 , p_T < 3 GeV/c
- Yield was extracted using un-binned log-likelihood fit

Rapidity range	Number of exclusive J/ψ	Number of dissociative J/ψ
2.5 < y < 4.0	1180 ± 84	1515 ± 83
2.5 < y < 3.25	629 ± 54	768 ± 55
3.25 < y < 4.0	564 ± 53	733 ± 52

Exclusive and dissociative J/ ψ photoproduction systematic uncertainties

Signal	Source	Mass range (GeV/ c^2)	Value (%)
	Luminosity		1.8%
All	Tracking efficiency		1%
	Matching efficiency		1%
	Pile-up correction		0.2%
	Total common		2.3%
J/ψ only	Muon trigger efficiency		1.1%
	Branching ratio		0.55%
	Photon flux		2%
	$\delta(1+f_{\rm D})$		1.1%
	V0C veto		2.6% (excl.), 12.7% (diss.)
	Signal autraction	(25 25)	from 3.6% to 5.5% (excl.),
	Signal extraction	(2.5, 3.5)	from 2.9% to 4.4% (diss.)
	Total		from 5.6% to 7.0% (excl.),
			from 13.5% to 13.9% (diss.)
diss	V0C veto		12.7%
σ^{diss}	Signal extraction		from 6.2% to 7.6%
σ^{exc}	Total		from 14.1% to 14.8%


Cross-section measurement

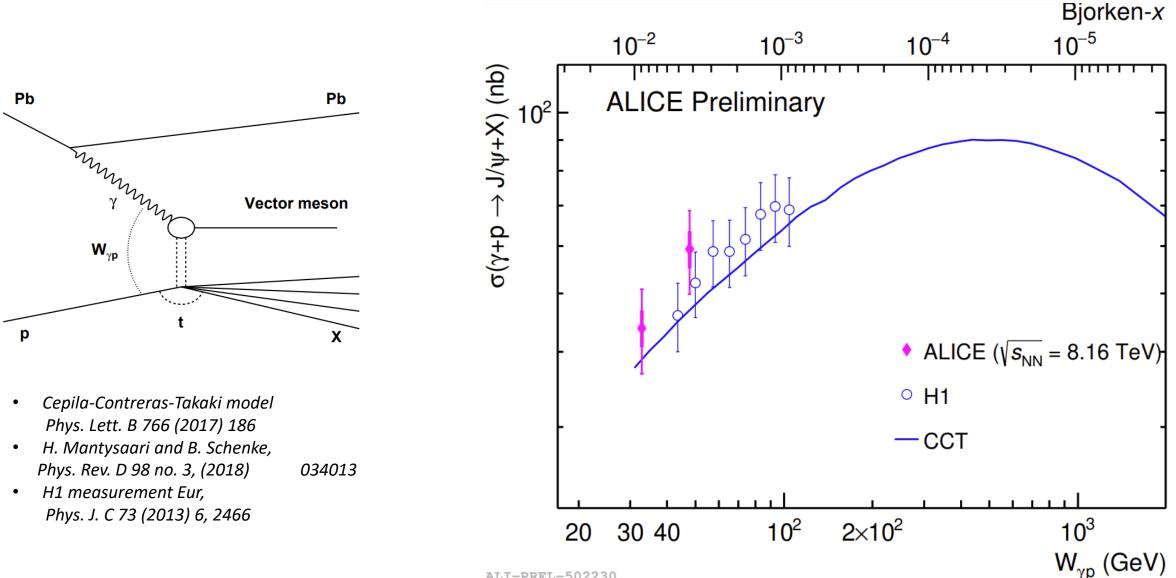

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(\mathbf{p} + \mathbf{P}\mathbf{b} \to \mathbf{p}^{(*)} + \mathbf{P}\mathbf{b} + \mathbf{J}/\psi) = \frac{N_{\mathrm{J}/\psi}}{(A \times \varepsilon)^{\mathrm{J}/\psi} \times (1 + f_{\mathrm{D}}) \times \mathscr{L} \times \varepsilon_{\mathrm{veto}} \times BR \times \Delta y},$$

Exclusive J/ ψ study

rapidity range	mean energy	$\sigma(\gamma p)$	$\sigma(\gamma p)$	$\sigma(\gamma p)$
	W (GeV)	(mid selection)	(STARlight)	(HERA)
2.5 < y < 4.0	39.8	$40.4 \pm 2.9 \pm 2.5$	43.8 ± 0.1	46.9 ± 1.7
2.5 < y < 3.25	47.7	$48.5 \pm 4.2 \pm 3.1$	49.4 ± 0.2	53.0 ± 2.0
3.25 < y < 4.0	32.8	$33.7 \pm 1.7 \pm 2.5$	38.1 ± 0.2	41.2 ± 1.5

Exclusive J/ ψ photoproduction off protons

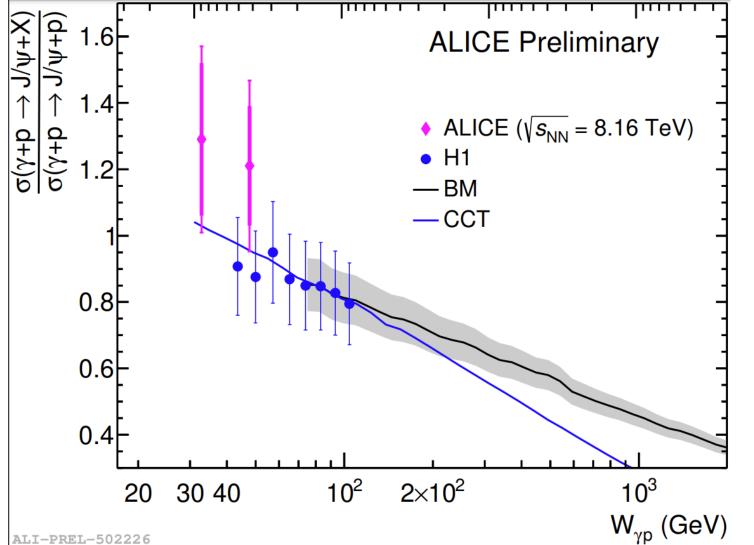
• Cepila, Contreras and Tapia Takaki model Phys. Lett. B 766 (2017) 186


Cross-section Calculation

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(\mathbf{p} + \mathbf{P}\mathbf{b} \to \mathbf{p}^{(*)} + \mathbf{P}\mathbf{b} + \mathbf{J}/\psi) = \frac{N_{\mathrm{J}/\psi}}{(A \times \varepsilon)^{\mathrm{J}/\psi} \times (1 + f_{\mathrm{D}}) \times \mathscr{L} \times \varepsilon_{\mathrm{veto}} \times BR \times \Delta y},$$

Dissociative Photoproduction of J/ ψ

rapidity range	mean energy W (GeV)	$\sigma(\gamma p)$ (mid selection)	$\sigma(\gamma p)$ (HERA)
2.5 < y < 4.0	39.8	$51.8 \pm 2.8 \pm 7.2$	46.9 ± 5.0
2.5 < y < 3.25	47.7	$59.3 \pm 4.2 \pm 8.4$	50.6 ± 5.4
3.25 < y < 4.0	32.8	$43.8 \pm 3.1 \pm 6.3$	43.2 ± 4.6


Energy dependence of dissociative J/ ψ

ALI-PREL-502230

10th Workshop of APS Tropical Group on Hadronic Physics

Energy dependence of dissociative-to-exclusive J/ψ

First measurement of J/ ψ with proton dissociation at hadronic colliders!

New data from Run 3 (continuous readout) will significantly improve the precision and energy reach

Summary

- Photoproduction of exclusive and dissociative J/ ψ cross sections off protons was measured in ALICE
- Cross-section measurement of exclusive J/ ψ agrees with power law dependence on $W_{\gamma p}$ for HERA and LHC experiments
- First measurement of dissociative photoproduction of J/ ψ was performed at LHC
- Continuous readout mode and upgrade detectors will increase statistics and precision for UPC J/ ψ in Run 3 and 4